高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于甲虫搜索的改进粒子群无人机辅助网络部署优化算法

陈佳美 李世昂 李玉峰 王宇鹏 别玉霞

陈佳美, 李世昂, 李玉峰, 王宇鹏, 别玉霞. 基于甲虫搜索的改进粒子群无人机辅助网络部署优化算法[J]. 电子与信息学报, 2023, 45(5): 1697-1705. doi: 10.11999/JEIT220404
引用本文: 陈佳美, 李世昂, 李玉峰, 王宇鹏, 别玉霞. 基于甲虫搜索的改进粒子群无人机辅助网络部署优化算法[J]. 电子与信息学报, 2023, 45(5): 1697-1705. doi: 10.11999/JEIT220404
CHEN Jiamei, LI Shiang, LI Yufeng, WANG Yupeng, BIE Yuxia. Improved Particle Swarm Optimization Unmanned Aerial Vehicle-assisted Network Deployment Optimization Algorithm Based on Beetle Antennae Search[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1697-1705. doi: 10.11999/JEIT220404
Citation: CHEN Jiamei, LI Shiang, LI Yufeng, WANG Yupeng, BIE Yuxia. Improved Particle Swarm Optimization Unmanned Aerial Vehicle-assisted Network Deployment Optimization Algorithm Based on Beetle Antennae Search[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1697-1705. doi: 10.11999/JEIT220404

基于甲虫搜索的改进粒子群无人机辅助网络部署优化算法

doi: 10.11999/JEIT220404
基金项目: 国家自然科学基金(61901284),辽宁省自然科学基金(2019-ZD-0220),航空科学基金(201926054001)
详细信息
    作者简介:

    陈佳美:女,讲师,研究方向为空地无线网络资源管理

    李世昂:男,硕士生,研究方向为空地无线网络资源管理

    李玉峰:男,教授,研究方向为图像处理

    王宇鹏:男,教授,研究方向为自组织网络与车联网

    别玉霞:女,副教授,研究方向为卫星网络

    通讯作者:

    陈佳美 chenjiamei5870@163.com

  • 中图分类号: TN919.72

Improved Particle Swarm Optimization Unmanned Aerial Vehicle-assisted Network Deployment Optimization Algorithm Based on Beetle Antennae Search

Funds: The National Natural Science Foundation of China (61901284), The Natural Science Foundation of Liaoning Province (2019-ZD-0220), The Aeronautical Science Foundation of China (201926054001)
  • 摘要: 在体育赛场等用户大规模聚集或者突发灾难的情况下,地面基站经常面临过载甚至瘫痪的问题。此时,多无人机(UAV)辅助网络系统可以很好地为地面基站提供信号补偿,有效地增强局部地区的通信质量。然而,无人机的机动性和网络流动引起的拓扑结构变化,会导致频繁的间歇性连接甚至出现传输故障。因此,UAV基站的有效部署以及网络性能的优化成为亟待解决的问题。该文提出一种基于甲虫搜索的改进粒子群UAV辅助网络部署优化算法—智能高效算法(IEA),利用甲虫搜索算法(BAS)的个体寻优优势,对粒子群算法(PSO)进行改进,并首次采用双门限约束保证用户通信质量,使得多UAV系统下的网络性能得到了改善。仿真结果表明,相对于传统算法,该文提出的IEA算法在系统吞吐量、用户平均吞吐量以及频谱效率等方面都获得了较大提升。
  • 图  1  基于LAP的大型室外活动场景的UAV辅助通信

    图  2  BAS仿生原理图

    图  3  系统吞吐量对比

    图  4  CDF系统吞吐量曲线

    图  5  系统GU平均吞吐量对比

    图  6  多UAV系统下的频谱效率

    图  7  3种算法下UAV与覆盖GU

    算法1 IEA算法
     (1) 在允许范围内随机初始化${{\rm{UAV}}_j}$的位置$t_j^u$和速度 $v_j^u$
     (2) 令迭代$u = 1$
     (3) DO
     (4)  For ${{\rm{UAV}}_j}$
     (5)   计算适应度函数值
     (6)     If适应度函数值比$p_{{\rm{sbest}}}^u$大
     (7)     设置当前的适应度函数值为$p_{{\rm{sbest}}}^u$
     (8)     结束如果
     (9)   结束循环
     (10) 选择UAV的最优适应度函数值$p_{{\rm{gbest}}}^u$
     (11) For ${{\rm{UAV}}_j}$
     (12)  For每个维度$k$
     (13)     根据如下公式计算速度
     (14)     $v_j^{u + 1} = \omega v_j^u + {c_1}{r_1}\left( {p_{{\rm{sbest}}}^u - t_j^i} \right)$
               $+ {c_2}{r_2}\left( {p_{{\rm{gbest}}}^u - t_j^u} \right)$
     (15)     根据公式更新的${{\rm{UAV}}_j}$位置
     (16) ${t_{ {\rm{right} } } } = t_j^u + v_j^u \times {\bf{dir} } \times l$
     (17) ${t_{ {\rm{left} } } } = x_j^u - v_j^u \times {\bf{dir} } \times l$
     (18) $t_j^{u + 1} = t_j^u + \left( {1 - \lambda } \right) \times {\rm{step} } \times {\bf{dir} } \times {\rm{sign} }$
        $\left( {f\left( {t_{\rm{r}}^u} \right) - f\left( {t_{\rm{l}}^u} \right)} \right) \times v_j^u+ \lambda \times v_j^u$
     (19)  结束循环
     (20) 结束循环
     (21) $u = u + 1$
     (22) 迭代完毕,结束循环
    下载: 导出CSV

    表  1  仿真参数

    参数符号设定值
    环境参数1$a$9.61
    环境参数2$b$0.16
    波长(m/s)$c$300 000 000
    载波频率(MHz)${f_c}$2 000
    GU的数量(个)$ N $5~15
    UAV的数量(个)$ M $1~3
    UAV的发射功率(dBm)$ {P_t} $10
    噪声功率(dBm)$ {N_0} $–102
    信噪比阈值(dB)${{\rm{SNR}}_{{\rm{th}}} }$10
    UAV覆盖半径阈值(m)${R_{{\rm{th}}} }$300
    带宽(MHz)$ B $0.2
    边界长度(m)$ {R_L} $1 000
    UAV的最大飞行高度(m)${h_{\min } }$20
    UAV的最小飞行高度(m)$ {h_{\max }} $500
    视距传播额外路径损耗${\eta _{{\rm{Los}}} }$1
    非视距传播额外路径损耗${\eta _{{\rm{nLos}}} }$20
    下载: 导出CSV
  • [1] DONG Lei, ZHAO Hongyi, CHEN Yan, et al. Introduction on IMT-2020 5G trials in China[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1849–1866. doi: 10.1109/JSAC.2017.2710678
    [2] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics &Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789
    [3] YEOM J, HAN Y, CHANG Anjin, et al. Hurricane building damage assessment using post-disaster UAV data[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 9867–9870.
    [4] CHEN Kanghua, WANG Ying, ZHAO Junwei, et al. URLLC-oriented joint power control and resource allocation in UAV-assisted networks[J]. IEEE Internet of Things Journal, 2021, 8(12): 10103–10116. doi: 10.1109/JIOT.2021.3051322
    [5] ZHAO Nan, LU Weidang, SHENG Min, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45–51. doi: 10.1109/MWC.2018.1800160
    [6] ZHAN Pengcheng, YU Kai, and SWINDLEHURST A. Wireless relay communications with unmanned aerial vehicles: Performance and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 2068–2085. doi: 10.1109/TAES.2011.5937283
    [7] ZHANG Shuhang, ZHANG Hongliang, DI Bichen, et al. Joint trajectory and power optimization for UAV relay networks[J]. IEEE Communications Letters, 2018, 22(1): 161–164. doi: 10.1109/LCOMM.2017.2763135
    [8] PEARRE B and BROWN T X. Model-free trajectory optimization for wireless data ferries among multiple sources[C]. IEEE Globecom Workshops, Miami, USA, 2010: 1793–1798.
    [9] PARK J H, CHOI S C, AHN I Y, et al. Multiple UAVs-based surveillance and reconnaissance system utilizing IoT platform[C]. 2019 International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 2019: 1–3.
    [10] AL-HOURANI A, KANDEEPAN S, and JAMALIPOUR A. Modeling air-to-ground path loss for low altitude platforms in urban environments[C]. 2014 IEEE Global Communications Conference, Austin, USA, 2014: 2898–2904.
    [11] 张广驰, 严雨琳, 崔苗, 等. 无人机基站的飞行路线在线优化设计[J]. 电子与信息学报, 2021, 43(12): 3605–3611. doi: 10.11999/JEIT200525

    ZHANG Guangchi, YAN Yulin, CUI Miao, et al. Online trajectory optimization for the UAV-mounted base stations[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3605–3611. doi: 10.11999/JEIT200525
    [12] GUO Hongzhi and LIU Jiajia. UAV-enhanced intelligent offloading for internet of things at the edge[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2737–2746. doi: 10.1109/TII.2019.2954944
    [13] ZENG Yong and ZHANG Rui. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747–3760. doi: 10.1109/TWC.2017.2688328
    [14] CUI Jian, SHAKHATREH H, HU Bo, et al. Power-efficient deployment of a UAV for emergency indoor wireless coverage[J]. IEEE Access, 2018, 6: 73200–73209. doi: 10.1109/ACCESS.2018.2882896
    [15] HAN Bing, LI Qingmei, and CHENG Chengqi. Research on UAV indoor path planning algorithm based on global subdivision grids[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 8503–8506.
    [16] WANG Lei, HU Bo, and CHEN Shanzhi. Energy efficient placement of a drone base station for minimum required transmit power[J]. IEEE Wireless Communications Letters, 2020, 9(12): 2010–2014. doi: 10.1109/LWC.2018.2808957
    [17] MA Xiaoyong, HU Shuting, ZHOU Danyang, et al. Adaptive deployment of UAV-aided networks based on hybrid deep reinforcement learning[C]. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, Canada, 2020: 1–6.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  268
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-05-27
  • 网络出版日期:  2022-05-30
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回