高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蜂窝物联网中短包域能量效率最大化波束成形优化与设计

李世党 魏明生 赵娟 刘加跃 唐守锋

李世党, 魏明生, 赵娟, 刘加跃, 唐守锋. 蜂窝物联网中短包域能量效率最大化波束成形优化与设计[J]. 电子与信息学报, 2022, 44(9): 3075-3082. doi: 10.11999/JEIT220390
引用本文: 李世党, 魏明生, 赵娟, 刘加跃, 唐守锋. 蜂窝物联网中短包域能量效率最大化波束成形优化与设计[J]. 电子与信息学报, 2022, 44(9): 3075-3082. doi: 10.11999/JEIT220390
LI Shidang, WEI Mingsheng, ZHAO Juan, LIU Jiayue, TANG Shoufeng. Optimization and Design of Beamforming for Cellular Internet-of-Things with Energy Efficiency Maximization in Short Packet Domain[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3075-3082. doi: 10.11999/JEIT220390
Citation: LI Shidang, WEI Mingsheng, ZHAO Juan, LIU Jiayue, TANG Shoufeng. Optimization and Design of Beamforming for Cellular Internet-of-Things with Energy Efficiency Maximization in Short Packet Domain[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3075-3082. doi: 10.11999/JEIT220390

蜂窝物联网中短包域能量效率最大化波束成形优化与设计

doi: 10.11999/JEIT220390
基金项目: 国家自然科学基金(62171119),国家重点研发计划(2017YFF0205500),徐州市重点研发项目(KC20027, KC18079)
详细信息
    作者简介:

    李世党:男,讲师,研究方向为干扰管理、通感算一体化、可重构智能表面等

    魏明生:男,副教授,硕士生导师,研究方向为传感器与检测技术

    赵娟:女,博士生,研究方向为边缘智能、信能同传、收发机设计

    刘加跃:男,硕士生,研究方向为资源分配、干扰对齐

    唐守锋:男,教授,博士生导师,研究方向为矿下物联网通信、智能检测技术

    通讯作者:

    魏明生 weims@jsnu.edu.cn

  • 中图分类号: TN929.5

Optimization and Design of Beamforming for Cellular Internet-of-Things with Energy Efficiency Maximization in Short Packet Domain

Funds: The National Natural Science Foundation of China (62171119), The National Key R&D Program of China (2017YFF0205500), The Key Research and Development Plan of Xuzhou (KC20027, KC18079)
  • 摘要: 为了满足未来蜂窝物联网(IoT)中超高可靠和超低时延的要求,该文提出一种适用于多小区多用户超高可靠极低时延网络短包域公平性能量效率最大化算法。首先,以最小用户传输速率、每个发射机最大功率等约束为限制,构建了一个关于波束成形矢量的非线性分式规划资源配置模型。随后,采用变量代换、连续凸近似等技术,将原始非凸优化问题转化为标准的凸问题,进而提出一种短包域迭代能量效率最优化方法进行求解。最后,数值仿真结果验证了所提算法在短包域具有良好的能量效率性能。
  • 图  1  所有用户中最小能量效率收敛曲线

    图  2  不同算法的性能与最大发射功率的关系

    图  3  不同算法的能效性能与发射天线的关系

    图  4  不同算法的能量效率与数据包长的关系

    1  短包域能量效率最大化算法(算法1)

     (1) 令$n = 0 $,设置满足功率约束的初始波束矢量${{\boldsymbol{w}}^{\left( n \right)}} $,算法的
       最大迭代次数为${N_{\max }} $。
     (2) 通过约束${\text{C}}{{\text{3}}'} $,C4,C5,式(8)和式(13),计算得到和
       $\left\{ {x_j^{\left( n \right)},y_j^{\left( n \right)},{\boldsymbol{\upsilon}} _j^{\left( n \right)},\zeta _{j,k}^{\left( n \right)} } \right\}$。
     (3) 开始循环:
     (4) 依据${{\boldsymbol{w}}^{\left( n \right)}} $, $x_j^{\left( n \right)} $, $y_j^{\left( n \right)} $, ${\boldsymbol{\upsilon}} _j^{\left( n \right)}$和$ \zeta _{j,k}^{\left( n \right)} $,通过求解P1,输出相应
       的解${t^ * } $, ${{\boldsymbol{w}}^{\text{*} } }$, $x_j^ * $, $y_j^ * $, ${\boldsymbol{\upsilon}} _j^ *$和$\zeta _{j,k}^ * $。
     (5) 更新${{\boldsymbol{w}}^{\left( {n + 1} \right)}} = {{\boldsymbol{w}}^ * } $, $ x_j^{\left( {n + 1} \right)} = x_j^ * $, $y_j^{\left( {n + 1} \right)} = y_j^ * $,
       ${\boldsymbol{\upsilon}} _j^{\left( {n + 1} \right)} = {\boldsymbol{\upsilon}} _j^ *$, $\zeta _{j,k}^{\left( {n + 1} \right)} = \zeta _{j,k}^ * $。
     (6) 更新P1的代价函数值:${t^{\left( {n + 1} \right)}} = {t^ * } $。
     (7) 若$ \left| {{t^{\left( {n + 1} \right)}} - {t^{\left( n \right)}}} \right| < \xi $或$n > {N_{\max }} $,其中$\xi $表示预置的任意小
       的数,则跳出循环并输出最终的解;否则,$n = n + 1 $,
       ${{\boldsymbol{w}}^{\left( n \right)}} = {{\boldsymbol{w}}^ * } $, $x_j^{\left( n \right)} = x_j^ * $, $y_j^{\left( n \right)} = y_j^ * $, ${\boldsymbol{\upsilon}} _j^{\left( n \right)} = {\boldsymbol{\upsilon}} _j^ *$,
       $\zeta _{j,k}^{\left( n \right)} = \zeta _{j,k}^ * $, ${t^{\left( n \right)}} = {t^ * } $,回到第(3)步。
    下载: 导出CSV
  • [1] 丰雷, 谢坤宜, 朱亮, 等. 面向电网业务质量保障的5G高可靠低时延通信资源调度方法[J]. 电子与信息学报, 2021, 43(12): 3418–3426. doi: 10.11999/JEIT210509

    FENG Lei, XIE Kunyi, ZHU Liang, et al. 5G ultra-reliable and low latency communication resource scheduling for power business quality assurance[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3418–3426. doi: 10.11999/JEIT210509
    [2] FENG Chen and WANG Huiming. Secure short-packet communications at the physical layer for 5G and beyond[J]. IEEE Communications Standards Magazine, 2021, 5(3): 96–102. doi: 10.1109/MCOMSTD.121.2100028
    [3] 许方敏, 伍丽娇, 王翔, 等. 5G上行链路中基于预测的紧急资源分配方法研究[J]. 电子与信息学报, 2022, 44(2): 611–619. doi: 10.11999/JEIT201050

    XU Fangmin, WU Lijiao, WANG Xiang, et al. Research on prediction based emergency resource allocation in 5G uplink[J]. Journal of Electronics &Information Technology, 2022, 44(2): 611–619. doi: 10.11999/JEIT201050
    [4] ZHANG Qianqian, LIANG P P, HUANG Yudi, et al. Label-assisted transmission for short packet communications: A machine learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8846–8859. doi: 10.1109/TVT.2018.2851619
    [5] SINGH K, BISWAS S, KU Menglin, et al. Transceiver design and power control for full-duplex ultra-reliable low-latency communication systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1392–1406. doi: 10.1109/TWC.2021.3103861
    [6] 胡锦松, 吴林梅, 束锋, 等. 无人机中继协助的有限码长隐蔽通信[J]. 电子与信息学报, 2022, 44(3): 1006–1013. doi: 10.11999/JEIT211372

    HU Jinsong, WU Linmei, SHU Feng, et al. UAV-relay assisted covert communication with finite block-length[J]. Journal of Electronics &Information Technology, 2022, 44(3): 1006–1013. doi: 10.11999/JEIT211372
    [7] SHIRVANIMOGHADDAM M, MOHAMMADI M S, ABBAS R, et al. Short block-length codes for ultra-reliable low latency communications[J]. IEEE Communications Magazine, 2019, 57(2): 130–137. doi: 10.1109/MCOM.2018.1800181
    [8] POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769
    [9] HU Yulin, OZMEN M, and GURSOY M C. Optimal power allocation for QoS-constrained downlink multi-user networks in the finite blocklength regime[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 5827–5840. doi: 10.1109/TWC.2018.2850302
    [10] NASIR A A, TUAN H D, NGUYEN H H, et al. Resource allocation and beamforming design in the short blocklength regime for URLLC[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1321–1335. doi: 10.1109/TWC.2020.3032729
    [11] KHALIFA N B, ANGILELLA V, ASSAAD M, et al. Low-complexity channel allocation scheme for URLLC traffic[J]. IEEE Transactions on Communications, 2021, 69(1): 194–206. doi: 10.1109/TCOMM.2020.3022008
    [12] MAKKI B, SVENSSON T, and ZORZI M. Finite block-length analysis of spectrum sharing networks using rate adaptation[J]. IEEE Transactions on Communications, 2015, 63(8): 2823–2835. doi: 10.1109/TCOMM.2015.2449842
    [13] CAI Yeming, JIANG Xu, LIU Mingqian, et al. Resource allocation for URLLC-oriented two-way UAV relaying[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3344–3349. doi: 10.1109/TVT.2022.3143174
    [14] SUN Chengjian, SHE Changyang, YANG Chenyang, et al. Optimizing resource allocation in the short blocklength regime for ultra-reliable and low-latency communications[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 402–415. doi: 10.1109/TWC.2018.2880907
    [15] SABUJ S R, AHMED A, CHO Y, et al. Cognitive UAV-aided URLLC and mMTC services: Analyzing energy efficiency and latency[J]. IEEE ACCESS, 2021, 9: 5011–5027. doi: 10.1109/ACCESS.2020.3048436
    [16] SINGH K, KU Menglin, and FLANAGAN M F. Energy-efficient precoder design for downlink multi-user MISO networks with finite blocklength codes[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(1): 160–173. doi: 10.1109/TGCN.2020.3045687
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  144
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-07-25
  • 网络出版日期:  2022-07-31
  • 刊出日期:  2022-09-19

目录

    /

    返回文章
    返回