高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于上行非正交多址接入技术的星空地融合网络性能分析

袁祖霞 程铭 郭克锋

程曦, 张志勇. 基于人工神经网络的复杂介质中波的传播不确定性分析方法[J]. 电子与信息学报, 2021, 43(12): 3662-3670. doi: 10.11999/JEIT200755
引用本文: 袁祖霞, 程铭, 郭克锋. 基于上行非正交多址接入技术的星空地融合网络性能分析[J]. 电子与信息学报, 2022, 44(8): 2666-2676. doi: 10.11999/JEIT220379
Xi CHENG, Zhiyong ZHANG. An Uncertainty Analysis Method of Wave Propagation in Complex Media Based on Artificial Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3662-3670. doi: 10.11999/JEIT200755
Citation: YUAN Zuxia, CHENG Ming, GUO Kefeng. Performance Analysis of Satellite-Aerial-Terrestrial Integrated Network Based on Uplink NOMA Technology[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2666-2676. doi: 10.11999/JEIT220379

基于上行非正交多址接入技术的星空地融合网络性能分析

doi: 10.11999/JEIT220379
基金项目: 国家自然科学基金(62001517),江苏省研究生科研与实践创新计划项目(KYCX19_0896)
详细信息
    作者简介:

    袁祖霞:女,1983年生,博士生,研究方向为卫星通信、通信信号处理等

    程铭:男,1991年生,讲师,研究方向为毫米波通信、星天地融合网络、预编码技术等

    郭克锋:男,1990年生,讲师,研究方向为MIMO通信系统、卫星通信、多用户通信系统等

    通讯作者:

    袁祖霞 yuanzuxia@126.com

  • 中图分类号: TN929.1

Performance Analysis of Satellite-Aerial-Terrestrial Integrated Network Based on Uplink NOMA Technology

Funds: The National Natural Science Foundation of China (62001517), The Postgraduate Research Practice Innovation Program of Jiangsu Province (KYCX19_0896)
  • 摘要: 针对光电混合的星空地融合网络上行链路,该文研究了多天线波束成形技术和上行非正交多址接入(NOMA)技术相结合的系统遍历和速率性能。首先,在无人机采用多天线和上行NOMA技术条件下,为实现系统和速率最大化,提出了一种基于统计信道状态信息的波束成形方案。接着,假设卫星-无人机链路采用自由空间光链路且服从伽马-伽马衰落,无人机-地面用户链路采用射频链路且服从相关瑞利衰落,推导了系统和速率的闭合表达式。最后,通过数值仿真验证了理论分析的正确性。仿真结果表明,与正交多址接入(OMA)方案相比,所提方案提高了系统性能,并且与基准波束成形(BF)方案相比,所提方案具有更好的性能优势。
  • 随着科学技术的快速发展,探地雷达技术作为一种非侵入浅表地球物理探测技术,已在土建、环保与军事等诸多重要领域得以广泛应用[1-5]。在对探地雷达系统电磁波束传播过程进行分析研究时,数值模拟是有效方法之一[6]。近年来,针对探地雷达系统的建模与仿真分析,有不少研究工作先后提出了性能良好的数值模拟算法。时域有限差分法以其易于实现,且可以对色散、有损介质进行建模仿真而成为常用方法之一。在探地雷达系统工作过程中,由于其电磁脉冲特性参数会受到诸如传输介质介电特性等相关参数的影响,系统对探测目标或对象的测量精度受到不同程度影响。故而,在对探地雷达系统进行建模仿真时必须考虑模型输出结果对这些相关参数集(即模型中输入参数集)的依赖性。然而,在实际建模仿真中,由于对输入参数(如土壤的介电特性)缺乏精确的知识,模拟仿真输出结果中存在不确定性[7]。为使模拟仿真结果更具现实指导价值,当考虑对输出结果置信度进行定量化表征时,针对探地雷达建模仿真进行不确定性分析就显得尤为必要[8]

    不确定性分析法可分为两类:非嵌入式方法和嵌入式方法。传统的非嵌入式方法即为蒙特卡罗方法[9],该算法要求执行数千次仿真代码直到结果收敛,这势必会导致高额的计算成本。在目前已有的研究中[8],有学者提出了将广义多项式混沌展开应用到辅助微分方程时域有限差分(Auxiliary Differential Equation – Finite Difference Time Domain, ADE-FDTD)中的嵌入式不确定性分析方法来量化由不确定输入参数引起的输出结果的不确定性。该方法较蒙特卡罗方法在运算量与计算效率方面已取得了显著的性能提升。然而,这种方法亦有一定局限性,其主要缺陷表现在:其一,计算复杂度会随着输入不确定参数集维数增加而迅速增加,显然这对于输入不确定参数集维数较大的情况是不适用的;其二,广义多项式混沌展开通常在仿真模型输入参数变化不大的情况下,可得到的较理想的不确定分析结果。但是在输入参数变化较剧烈,引起数值仿真输出结果较大波动的情况下,该方法很可能达不到预期的结果。

    为了有效解决上述问题,在探地雷达建模仿真不确定性分析研究过程中,本文构造了一种基于人工神经网络(Artificial Neural Network, ANN)的替代模型,该模型通过模拟替代探地雷达仿真模型的方式,可对系统参数不确定性进行分析与研究。考虑到在获取建立ANN替代模型所需训练、测试与验证数据样本时仍需运用基于ADE-FDTD进行全波仿真,文中首先阐述了探地雷达系统物理模型及其基于ADE-FDTD全波仿真计算的理论原理;其次,提出并设计基于ANN的替代模型,对构建替代模型过程中若干关键问题进行了详细分析与讨论,如激活函数[10]的选择与比较分析、如何降低或抑制过拟合[11]现象等;最后,为了验证ANN替代模型的准确性与有效性,结合探地雷达系统某一特定应用场景,利用ANN替代模型对系统输出结果进行预测,并与蒙特卡罗仿真(Monte Carlo Simulation, MCS)的结果进行比较分析。经数值模拟应用分析,基于ANN的替代模型所得预测结果与传统不确定性分析方法蒙特卡罗方法的结果达到较好的一致性,这使得探地雷达建模仿真输出结果不确定性分析过程摆脱运算量大、计算效率低下的困境。

    在建模中,土壤被认为是一种非磁性介质,其介电常数与频率有关,并且将其建模为具有静态电导率σs的2维德拜模型。该模型相关参数均可由测量获得[1]。然而,由于测量系统误差与偶然误差等测量误差的存在与影响,必然导致模型相关参数中均包含不确定性的成分。研究中,土壤介质材料相对介电常数εr(ω,θ)由式(1)确定

    εr(ω,θ)=ε(θ)+2p=1(εs(θ)ε(θ))Ap(θ)1+jωτp(θ)+σs(θ)jωε0
    (1)

    其中,ε(θ)表示当角频率ω为无穷大时土壤介电常数,εs(θ)表示静态介电常数,Ap(θ)表示极点振幅,τp(θ)表示弛豫时间,ε0是自由空间中电介质常数,ω是角频率,θ为一随机变量,j为虚数单位。假定相对介电常数εr(ω,θ)表达式中如下7个参数:ε(θ)εs(θ)A1(θ)A2(θ)τ1(θ)τ2(θ)σs(θ)为包含不确定性的输入参数。

    2维空间中描述电磁波传播规律的麦克斯韦方程可由式(2),式(3),式(4)给出

    Hxt=1μEzy
    (2)
    Hyt=1μEzx
    (3)
    Ezt=1ε(HyxHxy)
    (4)

    其中,HxHy分别表示x轴方向与y轴方向的磁场强度,Ez表示z轴方向电场强度,μ为磁导率,ε为介电常数。

    为采用ADE-FDTD方法分析色散介质中电磁波传播规律,沿z轴方向电场强度Ez的第1辅助变量Lz(ω,θ)可表示为

    Lz(ω,θ)=ε0εr(ω,θ)WyWzEz
    (5)

    其中,WyWz分别与yz法平面相关联,并且Wh的函数形式由式(6)给出:

    Wh=sh+σhjωε0,h=x,y,z
    (6)

    有关shσh的详细说明可参阅Taflove等人论著[6]。第2辅助变量Dz(ω,θ)可表示为

    Dz(ω,θ)=εr(ω,θ)Ez
    (7)

    第3辅助变量Rpz(ω,θ)可表示为

    Rpz(ω,θ)=jω(εs(θ)ε(θ))Ap(θ)1+jωτp(θ)Ez
    (8)

    将式(5),式(7),式(8)代入ADE-FDTD更新方程,通过式(11)可解得沿z轴方向电场强度Ez。在ADE-FDTD更新迭代过程中,3个辅助变量分别记为Lkz(nx,ny,θ)Dkz(nx,ny,θ)Rkpz(nx,ny,θ),其具体函数形式由式(9),式(10),式(12)给出。式中nxny分别表示沿xy轴方向上的空间步长,k为时间步长,ΔxΔy分别是沿xy轴方向上的采样宽度,Δt是时间间隔。

    Lk+1z(nx,ny,θ)=2ε0sxσxΔt2ε0sx+σxΔtLkz(nx,ny,θ)+2ε0Δt2ε0sx+σxΔt[1Δx(Hk+12y(nx+12,ny,θ)Hk+12y(nx12,ny,θ))1Δy(Hk+12x(nx,ny+12,θ)Hk+12x(nx,ny12,θ))]
    (9)
    Dk+1z(nx,ny,θ)=2ε0syσyΔt2ε0sy+σyΔtDkz(nx,ny,θ)+22ε0sy+σyΔt(Lk+1z(nx,ny,θ)Lkz(nx,ny,θ))
    (10)
    Ek+1z(nx,ny,θ)=C1CEkz(nx,ny,θ)4ε0Δtτ1(θ)(2τ2(θ)+Δt)CRk1z(nx,ny,θ)4ε0Δtτ2(θ)(2τ1(θ)+Δt)CRk2z(nx,ny,θ)+2ε0(2τ1(θ)+Δt)(2τ2(θ)+Δt)C(Dk+1z(nx,ny,θ)Dkz(nx,ny,θ))
    (11)
    Rk+1pz(nx,ny,θ)=2τp(θ)Δt2τp(θ)+ΔtRkpz(nx,ny,θ)+2(εs(θ)ε(θ))Ap(θ)2τp(θ)+Δt(Ek+1z(nx,ny,θ)Ekz(nx,ny,θ)
    (12)

    式中,

    C=(2ε0ε(θ)+σs(θ)Δt)(2τ1(θ)+Δt)(2τ2(θ)+Δt)+2ε0Δt(εs(θ)ε(θ))(A1(θ)(2τ2(θ)+Δt)+A2(θ)(2τ1(θ)+Δt))
    C1=(2ε0ε(θ)σs(θ)Δt)(2τ1(θ)+Δt)(2τ2(θ)+Δt)+2ε0Δt(εs(θ)ε(θ))(A1(θ)(2τ2(θ)+Δt)+A2(θ)(2τ1(θ)+Δt))

    同理,可得到沿xy轴方向上的磁场强度HxHy。ADE-FDTD更新方程表明,土壤模型参数的不确定性会引入HxHyEz数值仿真结果的不确定性。因此,为使模拟仿真结果更具现实指导意义,对输出结果中的不确定性进行量化分析就显得尤为必要。本文基于ANN技术,设计构造ANN替代模型模拟替代探地雷达仿真模型。

    基于ANN的替代模型旨在对任意给定一组包含不确定性的输入参数时,能够准确预测探地雷达系统的输出结果,其训练过程与测试过程如图1所示。

    图 1  ANN替代模型的训练过程与测试过程

    图1(a)所示,在该模型训练过程中,包含不确定性的土壤介电特性参数矩阵I={I1I2IM}(ImRS1mM表示某一S维空间向量)与FDTD全波仿真输出结果U={U1U2UM}(UmRD1mM表示某一D维空间向量)构成训练样本,其中M为训练集样本个数。在图1(b)模型测试过程中,当给定一组新的不确定性输入参数集I={I1I2IN}时,使用已经训练好的ANN替代模型可得到对应于新不确定性输入参数集I的全波仿真输出结果的预测值U={U1U2UN}(UnRD1nN表示某一D维空间向量)。基于此设计思路,探地雷达系统建模仿真的不确定分析研究过程便可通过运行此替代模型,得到其仿真结果的统计特征(如均值、标准差等),而不是重复数以千次地运行ADE-FDTD全波仿真。

    在本研究设计中,神经网络的数据集分为3个部分:训练集、测试集和验证集。其中,训练数据集占全部数据的60%。模型参数均采用一种基于低阶矩估计的随机目标函数一阶梯度优化算法,即自适应矩估计(Adam)算法[12],进行优化处理。

    在ANN替代模型超参数的选择与设计上,考虑到ANN隐藏层激活函数对模型的学习能力与预测精度有重要影响,文中针对当前几种主流ANN激活函数,如ReLU(Rectified Linear Unit)函数[13]、LReLU(Leaky Rectified Linear Units)函数 [14]、PReLU(Parametrized Rectified Linear Units)函数 [15]以及ELU(Exponential Linear Unit)函数 [16],分别将其应用于ANN替代模型隐藏层,并分析比较它们对ANN整体性能的影响。

    其中,ReLU函数的具体函数形式如式(13)

    f(ai)={0, ai<0ai, ai0
    (13)

    LReLU函数的具体函数形式如式(14)

    f(ai)={αai, ai<0ai, ai0
    (14)

    PReLU函数的具体函数形式如式(15)

    f(ai)={αiai, ai<0ai, ai0
    (15)

    ELU函数的具体函数形式如式(16)

    f(ai)={α(exp(ai)1), ai<0ai, ai0
    (16)

    式(13)—式(16)中ai表示第i个神经元的输入,α是超参数,而αi是一可学习参数。此外,对于ANN输入输出层的激活函数则选取ReLU函数。ANN性能评价采用均方差(MSE)公式进行,如式(17)

    MSE=1RRr=1(YrˆYr)2
    (17)

    其中,YrˆYr分别表示第r个数据的观测值与预测值,R表示数据的总个数。

    当分别将ReLU函数、LReLU函数、PReLU函数与ELU函数应用于ANN替代模型隐藏层后,经过对模型进行反复训练学习,得出不同激活函数作用下ANN替代模型的训练损失函数和验证损失函数随Epochs的变化规律,如图2所示。

    图 2  4种不同激活数属分别应用于ANN替代模型隐藏层后训练损失函数与验证损失函数随Epochs的变化关系(未应用DropOut方法)

    图2可以看出,除应用ELU函数外,选择将其余3种函数作为ANN隐藏层激活函数时,ANN均产生较大程度的过拟合问题。为此,研究中针对选取ReLU函数、PReLU函数和LReLU函数作为隐藏层激活函数的ANN在其训练过程中分别应用DropOut方法来抑制过拟合问题。DropOut方法的核心思想如式(18)—式(21)所述[16]

    rgiBernoulli(q)
    (18)
    ˜yg=rgyg
    (19)
    ag+1i=wg+1i˜yg+bg+1i
    (20)
    yg+1i=f(ag+1i)
    (21)

    其中,ag表示第g层网络输入矢量,yg表示第g层网络输出矢量,˜yg表示对第g层应用DropOut方法之后对应的输出矢量,wgbg分别表示第g层的权重与偏置,表示矢量内积,f表示激活函数。对ANN中任意隐藏层grg为一随机矢量,由相互独立的若干伯努利随机变量组成,且每个随机变量的概率q为1。

    针对前述应用ReLU函数、PReLU函数和LReLU函数作为隐藏层激活函数而产生过拟合问题的ANN网络,对其分别应用DropOut方法,经过模型训练与学习,使用DropOut方法能够显著地抑制ANN网络的过拟合问题。表1分别给出了应用DropOut方法前后,选择不同函数作为隐藏层激活函数时,ANN替代模型在经过5000次迭代之后的训练数据与验证数据的损失值情况。

    表 1  应用DropOut方法前后,不同激活函数作用时ANN替代模型的损失函数值
    激活函数网络是否应用
    DropOut方法
    训练数据损失
    (×10–5)
    验证数据损失
    (×10–5)
    ReLU函数0.7636.98
    3.7304.28
    LReLU函数2.7805.50
    3.7204.36
    PReLU函数0.9537.65
    3.7304.30
    ELU函数3.7404.30
    //
    下载: 导出CSV 
    | 显示表格

    通过对表1进行比较分析,不难发现如下结论:(1)相较于ReLU函数、LReLU函数和PReLU函数,选取ELU函数作为ANN替代模型隐藏层激活函数时,其在替代模型训练过程中能够在一定程度上改善过拟合问题,并且模型收敛速度更快;(2)针对前三者作为隐藏层激活函数时替代模型存在过拟合的问题,若对替代模型的隐藏层应用DropOut方法,可显著改善训练数据过拟合的问题。

    图3给出了本文所研究探地雷达系统及其具体应用场景在进行ADE-FDTD全波仿真时的2维模型。如图所示,一块边长为1 m的正方形金属目标物埋置于色散土壤内,且在其旁边存在一边长为0.5 m的干燥花岗岩。图中TxRx分别表示发射机与接收机,其均被建模为点源[17-19]。研究采用Blackmann-Harris脉冲作为激励源脉冲。其中,中心频率fc=200 MHz,Ts=1.55/fc。同时,将各向异性完全匹配层(Uniaxial Perfectly Matched Layer,UPML)作为吸收边界条件。

    图 3  探地雷达系统及其应用场景模拟模型

    模拟计算中,模型计算域为xoy平面内x × y = 4.00 m × 4.00 m的区域,并且将其分解为方形单元网格。空间采样宽度Δx = Δy = Δ = 5.00 mm。时间步长Δt = Δx/(2c) = 8.33 ps,式中c表示自由空间中的光速。UPML的厚度是10Δ。德拜模型的相关参数均通过测量得到,各参数中均含有不确定性成分,如表2所示。

    表 2  色散土壤模型参数
    土壤湿度(%)εσs(mS/m)A1A2τ1(ns)τ1(ns)
    2.53.200.3970.750.302.710.108
    54.151.1101.800.603.790.151
    106.002.0002.750.753.980.251
    下载: 导出CSV 
    | 显示表格

    图4给出了当包含不确定性的输入参数个数为7时,采用MCS方法,在2维探地雷达模型接收机Rx处观测得到电场强度Ez随时间变化的规律。该曲线基于60个采样点绘制而成,且模拟中每个输入参数的不确定性变化范围为10%。从电场强度Ez的变化规律曲线中亦可以看出,输入参数中的不确定性会致使模拟输出结果中产生不确定性成分。与已有研究成果[8]相比较,本研究将输入参数的变化范围从5%提高到10%,较大的不确定输入参数的变化范围会引起输出相对更大的不确定性,增大了不确定性分析的难度。

    图 4  基于MCS方法的电场强度Ez变化规律

    研究中,色散土壤湿度取2.5%,干燥花岗岩的相对介电常数εg为5,电导率σg为10–5mS/m。所有数值模拟计算过程均由一台处理器为Intel i5-6440HQ,主频2.6GHz,内存为16GB的计算机完成。执行一次全波仿真的CPU用时为1098.80 s。

    研究中在ANN替代模型运用之前,FDTD仿真模拟中输入输出值均对其进行标准化处理。同时,采用拉丁超立方采样法(LHS)获取模型输入参数。此外,对于ANN替代模型的Batch size参数、隐藏层数量,以及各隐藏层内神经元数量等其它超参数的设置如表3所示。

    表 3  ANN替代模型超参数设置
    神经网络Batch SizeEpochs数量隐藏层数量及各层
    神经元数量
    ANN替代模型2550001000,1000,1000
    下载: 导出CSV 
    | 显示表格

    当ANN替代模型完成训练学习过程后,其即可被用来对探地雷达系统输出结果进行预测,并进一步用于不确定性分析中。图5给出了基于ANN替代模型对接收机Rx处电场强度Ez的预测值进行统计计算得到Ez的均值与标准差变化规律。

    图 5  土壤中含有金属块以及花岗岩,输入不确定性参数个数为7且变化波动范围均为10%时,Rx处电场强度Ez统计特性

    图5可以看出,当ANN替代模型隐藏层激活函数采用ELU函数时所得结果与基于ADE-FDTD的全波仿真所得结果,无论是均值还是方差都具有较好的一致性。与此同时,从图5也可以发现,当ANN替代模型隐藏层激活函数分别采用ReLU函数、LReLU函数、 PReLU函数并应用DropOut方法的3种结果基本相似,所得方差与全波仿真的结果有一定偏差。当与图6进行对比分析会发现,分别采用ReLU函数、LReLU函数、PReLU函数作为ANN隐藏层激活函数,且不应用DropOut 方法减少过拟合时,得到的方差与全波仿真所得方差的偏差进一步增大。综上所述,采用ELU函数可以得到较好的预测结果,并且无需考虑过拟合问题。

    图 6  土壤中含有金属块以及花岗岩,输入不确定性参数个数为7且变化波动范围均为10%时,Rx处电场强度Ez统计特性

    表4给出了分别采用传统MCS不确定分析法和ANN替代模型(ELU函数作为激活函数)进行数值模拟的CPU耗时情况。其中,ANN替代模型的数值模拟CPU耗时主要由两部分组成:(1)替代模型训练学习耗时(2011.21 s);(2)任给一组新输入参数,替代模型预测1000个输出结果的耗时(1.80 s)。

    表 4  传统MCS不确定分析法和ANN替代模型进行数值模拟的CPU耗时
    数值模拟方法仿真次数CPU耗时(s)
    MCS10001125663.71
    ANN替代模型2002011.21(训练耗时)+1.80(预测耗时)
    下载: 导出CSV 
    | 显示表格

    表4可以看出,在结果保持较好一致性的情况下,采用ANN替代模型极大地减少了ADE-FDTD仿真次数,并且计算效率更高。需要注意的是,尽管ANN的训练时间以及预测时间较短,但是为了得到训练样本进行200次全波仿真也需要消耗时间。

    为了进一步研究分析ANN替代模型对GPR系统数值模拟模型中异常体数量、类型、分布形态、介电参数等参数变化的适应性与有效性,研究去除了图3所示模型中的干燥花岗岩,仅保留正方形金属目标物,并将其边长由1 m减小至0.3 m,其他数值模型参数条件保持不变。同时,模型输入不确定性参数个数仍为7个,且随机波动变化范围也为10%。图7给出了基于ANN替代模型对接收机Rx处电场强度Ez的预测值进行统计计算得到Ez的均值与标准差变化规律。在这里,ANN替代模型隐藏层激活函数直接采用ELU函数。从图7所示模型预测结果的统计特性曲线可以看出,即使系统模拟模型变化,GPR系统回波时域波形发生改变,本文提出的ANN替代模型预测结果的统计特性依然可以与MCS不确定分析法所得结果保持较好一致。

    图 7  土壤中含有金属块,输入不确定性参数个数为7且变化波动范围均为10%时,Rx处电场强度Ez统计特性

    本文旨在对2维探地雷达系统建模仿真中因色散有损土壤介质的不确定性参数所引起的仿真输出结果的不确定性量化分析方法进行研究。针对传统不确定性分析方法解决此类问题时计算效率低、运算量大的问题,提出了一种基于ANN的替代模型,替代探地雷达系统全波仿真行为的方式,基于该模型方法可对探地雷达系统输出结果进行预测,进而得到输出结果统计特性以进行有效的参数不确定性分析。其次,文中对构建ANN替代模型的关键问题,如隐藏层激活函数的选择、如何抑制过拟合现象等,进行了详细的比较分析。结果显示:相较于ReLU函数、LReLU函数与PReLU函数,选择ELU函数作为替代模型隐藏层激活函数可获得较为理想的网络性能。当选取前三者作为隐藏层激活函数时,替代模型将会产生明显的过拟合问题,为此可采用DropOut方法来抑制过拟合问题。最后,经具体应用案例模拟仿真验证分析,在相同的数值模型、不确定性输入参数个数,以及参数变化范围为10%的前提条件下,通过ANN替代模型所得不确定性分析结果与传统基于MCM法所得结果具有较好的一致性,且相较于后者,前者计算时间效率提升79.82%。本文的不足之处是土壤模型较为简单假设为均匀介质,没有考虑土壤的孔隙率等因素,在将来的工作中将完善仿真模型,考虑现实应用中的真实情况进行非均匀介质建模仿真。尽管ANN的训练时间以及预测时间相对MCS较短,但是为了得到ANN的训练样本,仍然耗时进行200次全波仿真。未来的工作将考虑如何减少ANN所需训练样本数,进一步减少时间消耗,提高效率。

  • 图  1  系统模型

    图  2  系统框图

    图  3  波束成形次优化方案的流程图

    图  4  NOMA/OMA策略下遍历和速率曲线

    图  5  NOMA完美/非完美SIC条件下采用不同BF方案遍历和速率曲线

    图  6  不同波束成形方案下遍历和速率曲线

    表  1  系统参数

    参数数值参数数值
    卫星轨道GEOFSO链路路径损耗(dB)72
    卫星高度(×104 km)3.6指向损失A01
    无人机与用户距离dk(km)1.1FSO接收器接受孔径Dr(m)0.3[13]
    半径r0(m)500电光转换系数η1
    RF链路载波频率fc(GHz)2等效波束半径与指向误差偏移量之间的比率τ6
    RF链路路径损耗(dB)114~115与大气环境有关的大尺度单元的有效数量α2.902
    FSO链路波长(nm)1550[13]与大气环境有关的小尺度单元的有效数量β2.51
    光接收带宽B0(GHz)30[12]AOA角度θd3075
    下载: 导出CSV
  • [1] KODHELI O, LAGUNAS E, MATURO N, et al. Satellite communications in the new space era: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 70–109. doi: 10.1109/COMST.2020.3028247
    [2] 徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363
    [3] HUANG Qingquan, LIN Min, WANG Junbo, et al. Energy efficient beamforming schemes for satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2020, 68(6): 3863–3875. doi: 10.1109/TCOMM.2020.2978044
    [4] KAMGA G N, AÏSSA S, RASETHUNTSA T R, et al. Mixed RF/FSO communications with outdated-CSI-based relay selection under double generalized Gamma turbulence, generalized pointing errors, and Nakagami-m fading[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 2761–2775. doi: 10.1109/TWC.2019.2954866
    [5] XU Guanjun and SONG Zhaohui. Performance analysis for mixed κ-μ fading and M-distribution dual-hop radio frequency/free space optical communication systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1517–1528. doi: 10.1109/TWC.2020.3034104
    [6] HUANG Qingquan, LIN Min, ZHU Weiping, et al. Uplink massive access in mixed RF/FSO satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2413–2426. doi: 10.1109/TCOMM.2021.3049364
    [7] WANG Lina, WU Yanan, ZHANG Haijun, et al. Resource allocation for NOMA based space-terrestrial satellite networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1065–1075. doi: 10.1109/TWC.2020.3030704
    [8] JAMALI M V and MAHDAVIFAR H. Uplink non-orthogonal multiple access over mixed RF-FSO systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3558–3574. doi: 10.1109/TWC.2020.2974947
    [9] ZHAO Jinlong, YUE Xinwei, KANG Shaoli, et al. Joint effects of imperfect CSI and SIC on NOMA based satellite-terrestrial systems[J]. IEEE Access, 2021, 9: 12545–12554. doi: 10.1109/ACCESS.2021.3051306
    [10] LIN Zhi, LIN Min, WANG Junbo, et al. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 657–670. doi: 10.1109/JSTSP.2019.2899731
    [11] GRADSHTEYN I S and RYZHIK I M. Table of Integrals, Series, and Products[M]. 7th ed. San Diego, USA: Academic Press, 2007.
    [12] ANTONINI M, BETTI S, CARROZZO V, et al. Feasibility analysis of a HAP-LEO optical link for data relay purposes[C]. 2006 IEEE Aerospace Conference, Big Sky, USA, 2006: 1–7.
    [13] LI Mi, HONG Yifeng, ZENG Cheng, et al. Investigation on the UAV-to-satellite optical communication systems[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2128–2138. doi: 10.1109/JSAC.2018.2864419
    [14] TRINH P V, DANG N T, and PHAM A T. All-optical relaying FSO systems using EDFA combined with optical hard-limiter over atmospheric turbulence channels[J]. Journal of Lightwave Technology, 2015, 33(19): 4132–4144. doi: 10.1109/JLT.2015.2466432
    [15] ERTEL R B, CARDIERI P, SOWERBY K W, et al. Overview of spatial channel models for antenna array communication systems[J]. IEEE Personal Communications, 1998, 5(1): 10–22. doi: 10.1109/98.656151
    [16] LIN Min, YANG Lvxi, ZHU Weiping, et al. An open-loop adaptive space-time transmit scheme for correlated fading channels[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(2): 147–158. doi: 10.1109/JSTSP.2008.922482
    [17] YUAN Jide, MATTHAIOU M, JIN Shi, et al. Tightness of Jensen’s bounds and applications to MIMO communications[J]. IEEE Transactions on Communications, 2017, 65(2): 579–593. doi: 10.1109/TCOMM.2016.2623945
    [18] MULLEN K. The Teacher's corner: A note on the ratio of two independent random variables[J]. The American Statistician, 1967, 21(3): 30–31. doi: 10.1080/00031305.1967.10479818
    [19] GOLUB G H and VAN LOAN C F. Matrix Computations[M]. 2nd ed. Baltimore: The Johns Hopkins University Press, 1989.
    [20] WOLFRAM I. Mathematica edition: Version 12.0 [OL]. https://www.wolfram.com, 2020.
    [21] ARTI M K and BHATNAGAR M R. Beamforming and combining in hybrid satellite-terrestrial cooperative systems[J]. IEEE Communications Letters, 2014, 18(3): 483–486. doi: 10.1109/LCOMM.2014.012214.132738
    [22] HUANG Qingquan, LIN Min, AN Kang, et al. Secrecy performance of hybrid satellite-terrestrial relay networks in the presence of multiple eavesdroppers[J]. IET Communications, 2018, 12(1): 26–34. doi: 10.1049/iet-com.2017.0948
  • 期刊类型引用(4)

    1. 施一飞. 分布式多维数据流频繁模式挖掘算法设计. 吉林大学学报(信息科学版). 2023(01): 174-179 . 百度学术
    2. 郝云权,赵大志,李伟斌,孔满昭,刘森云. POD-BPNN预测模型及结冰条件不确定性量化. 南京航空航天大学学报. 2023(02): 302-310 . 百度学术
    3. 杨静,吉晓阳,李少波,胡建军,王阳,刘庭卿. 具有正则化约束的脉冲神经网络机器人触觉物体识别方法. 电子与信息学报. 2023(07): 2595-2604 . 本站查看
    4. 姜岚,李远,智李,周蠡,赵阳. 基于POD-RBF代理模型和特征点KNN校正的电力舱温度反演方法. 电子测量技术. 2023(24): 68-76 . 百度学术

    其他类型引用(2)

  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  722
  • HTML全文浏览量:  247
  • PDF下载量:  87
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-07-10
  • 录用日期:  2022-07-13
  • 网络出版日期:  2022-07-15
  • 刊出日期:  2022-08-17

目录

/

返回文章
返回