高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏表示的低照度遥感影像夜间海上船舶灯光检测方法

薛成宬 高彩霞 胡坚 邱实 汪琪

薛成宬, 高彩霞, 胡坚, 邱实, 汪琪. 基于稀疏表示的低照度遥感影像夜间海上船舶灯光检测方法[J]. 电子与信息学报, 2023, 45(5): 1747-1757. doi: 10.11999/JEIT220369
引用本文: 薛成宬, 高彩霞, 胡坚, 邱实, 汪琪. 基于稀疏表示的低照度遥感影像夜间海上船舶灯光检测方法[J]. 电子与信息学报, 2023, 45(5): 1747-1757. doi: 10.11999/JEIT220369
XUE Chengcheng, GAO Caixia, HU Jian, QIU Shi, WANG Qi. Marine Boat Lights Detection Method Based on Sparse Representation for Low Light Remote Sensing Images During Night[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1747-1757. doi: 10.11999/JEIT220369
Citation: XUE Chengcheng, GAO Caixia, HU Jian, QIU Shi, WANG Qi. Marine Boat Lights Detection Method Based on Sparse Representation for Low Light Remote Sensing Images During Night[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1747-1757. doi: 10.11999/JEIT220369

基于稀疏表示的低照度遥感影像夜间海上船舶灯光检测方法

doi: 10.11999/JEIT220369
基金项目: 国家重点研发计划(2018YFB0504600),中国科学院前沿科学重点研发项目(QYZDB-SSW-JSC051)
详细信息
    作者简介:

    薛成宬:女,博士生,研究方向为低照度遥感数据处理、目标检测

    高彩霞:女,研究员,研究方向为定量遥感

    胡坚:男,研究员,研究方向为遥感载荷数据处理和应用

    邱实:女,研究员,研究方向为低照度遥感在轨定标、低照度遥感辐射产品应用

    汪琪:男,副研究员,研究方向为遥感图像处理

    通讯作者:

    胡坚 jianhu_cas@163.com

  • 中图分类号: TN911.73; TP751

Marine Boat Lights Detection Method Based on Sparse Representation for Low Light Remote Sensing Images During Night

Funds: The National Key Research and Development Program of China (2018YFB0504600), The Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDB-SSW-JSC051)
  • 摘要: 针对目前基于低照度遥感影像对夜间海上船舶检测存在的目标特征挖掘不足的问题,该文设计了一种可使船舶目标样本和背景噪声样本最小错分的稀疏度指标,提出一种基于稀疏编码算法和字典学习算法的低照度遥感影像夜间船舶灯光检测算法,并将其应用于墨西哥湾北部海域、天津港南侧海域和上海港东侧海域,检测精确度分别为96.36%, 95.12%, 86.26%,召回率分别为96.36%, 92.86%, 94.19%,调和平均值分别为96.36%, 93.98%, 90.05%;进一步地,该文将此算法与3种典型低照度遥感影像夜间海上船舶检测算法进行了对比分析,结果表明该文算法更具有优越性能,可为夜间海上船舶的检测提供新的思路。
  • 图  1  检测算法流程图

    图  2  船舶灯光样本和背景噪声样本的稀疏度指标计算结果统计直方图

    图  3  船舶灯光样本和背景噪声样本的新指标计算结果统计直方图

    图  4  本文算法在验证集上的$ P - R $曲线

    图  5  本文算法在3个不同海域的检测结果

    图  6  本文算法在3个不同海域的检测结果与船舶灯光实际位置的对比

    图  7  已有的低照度遥感影像夜间海上船舶灯光检测算法与本文算法的$ P - R $曲线对比图

    图  8  已有的低照度遥感影像夜间海上船舶灯光检测算法在墨西哥湾北部海域的检测结果

    图  9  已有的低照度遥感影像夜间海上船舶灯光检测算法在天津港南侧海域的检测结果

    图  10  已有的低照度遥感影像夜间海上船舶灯光检测算法在上海港东侧海域的检测结果

    表  1  常用的稀疏度指标及其计算公式

    稀疏度指标计算公式
    $ {l_p} $范数$ {l_p} = {\left( {\displaystyle\sum\limits_{i = 1}^N {{{\left| {{x_i}} \right|}^p}} } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. } p}}},0 < p \le 1 $(4)
    $ {l_2} $范数与$ {l_1} $范数之比$ {{{l_2}} \mathord{\left/ {\vphantom {{{l_2}} {{l_1}}}} \right. } {{l_1}}} = {{\sqrt {\displaystyle\sum\limits_{i = 1}^N {x_i^2} } } \mathord{\left/ {\vphantom {{\sqrt {\displaystyle\sum\limits_{i = 1}^N {x_i^2} } } {\displaystyle\sum\limits_{i = 1}^N {\left| {{x_i}} \right|} }}} \right. } {\displaystyle\sum\limits_{i = 1}^N {\left| {{x_i}} \right|} }} $(5)
    Hoyer系数${\rm{Hoyer} } = { {\left( {\sqrt N - \dfrac{ { {l_1} } }{ { {l_2} } } } \right)} \mathord{\left/ {\vphantom { {\left( {\sqrt N - \frac{ { {l_1} } }{ { {l_2} } } } \right)} {\left( {\sqrt N - 1} \right)} } } \right. } {\left( {\sqrt N - 1} \right)} }$(6)
    Gini系数${\rm{Gini} } = 1 - \dfrac{2}{ { {l_1} } }\displaystyle\sum\limits_{i = 1}^N { {x_i} } \frac{ {N - i + 1/2} }{N},|{x_1}| \le |{x_2}| \le \cdots \le \left| { {x_N} } \right|$(7)
    下载: 导出CSV

    表  2  各稀疏度指标对船舶灯光和背景噪声的区分度

    稀疏度指标$ {\rho _{{\text{target}}}} $${\rho _{ {{\rm{noise}}} } }$$ {J_{\min }} $
    $ {l_0} $范数1.001.0048.00
    $ {l_1} $范数0.390.6632.43
    $ {l_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} $范数0.340.4312.01
    $ {{{l_2}} \mathord{\left/ {\vphantom {{{l_2}} {{l_1}}}} \right. } {{l_1}}} $0.400.802.76
    Hoyer系数0.400.807.72
    Gini系数0.981.004.57
    下载: 导出CSV

    表  3  本文算法在3个不同海域的检测性能评价指标值

    研究区域$ P $$ R $${\rm{F} }1$
    墨西哥湾北部海域0.96360.96360.9636
    天津港南侧海域0.95120.92860.9398
    上海港东侧海域0.86260.94190.9005
    下载: 导出CSV

    表  4  已有的低照度遥感影像夜间海上船舶灯光检测算法和本文算法在验证集和测试集上的检测性能评价指标值

    算法验证集测试集
    $ P $$ R $${\rm{F}}1$$ P $$ R $$ {\rm{F}}1 $
    基于SMI特征的检测算法0.93270.90000.91610.89510.90260.8988
    基于辐亮度梯度特征的检测算法0.93420.91500.92450.90480.90130.9030
    CFAR检测算法0.91190.87500.89310.86990.87640.8731
    本文算法0.95850.97500.96670.97310.94760.9602
    下载: 导出CSV

    表  5  已有的低照度遥感影像夜间海上船舶灯光检测算法在3个不同海域的检测性能评价指标值

    算法墨西哥湾北部海域天津港南侧海域上海港东侧海域
    $ P $$ R $$ {\rm{F}}1 $$ P $$ R $$ {\rm{F}}1 $$ P $$ R $$ {\rm{F}}1 $
    基于SMI特征的检测算法0.83640.92000.87620.92500.88100.90250.86590.82560.8453
    基于辐亮度梯度特征的检测算法0.73910.68000.70830.72090.73810.72940.79550.81400.8046
    CFAR检测算法0.77270.68000.72340.80950.80950.80950.82560.82560.8256
    下载: 导出CSV
  • [1] CROFT T A. Nighttime images of the earth from space[J]. Scientific American, 1978, 239(1): 86–98. doi: 10.1038/scientificamerican0778-86
    [2] ELVIDGE C D, CINZANO P, PETTIT D R, et al. The Nightsat mission concept[J]. International Journal of Remote Sensing, 2007, 28(12): 2645–2670. doi: 10.1080/01431160600981525
    [3] ELVIDGE C D, BAUGH K E, ZHIZHIN M, et al. Why VIIRS data are superior to DMSP for mapping nighttime lights[J]. Proceedings of the Asia-Pacific Advanced Network, 2013, 35: 62–69. doi: 10.7125/APAN.35.7
    [4] SCHUELER C F, LEE T F, and MILLER S D. VIIRS constant spatial-resolution advantages[J]. International Journal of Remote Sensing, 2013, 34(16): 5761–5777. doi: 10.1080/01431161.2013.796102
    [5] MILLER S D, MILLS S P, ELVIDGE C D, et al. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): 15706–15711. doi: 10.1073/pnas.1207034109
    [6] MAN D C, TSUBASA H, and FUKUI H. Normalization of VIIRS DNB images for improved estimation of socioeconomic indicators[J]. International Journal of Digital Earth, 2021, 14(5): 540–554. doi: 10.1080/17538947.2020.1849438
    [7] RYBNIKOVA N. Everynight accounting: Nighttime lights as a proxy for economic performance of regions[J]. Remote Sensing, 2022, 14(4): 825. doi: 10.3390/rs14040825
    [8] SUDALAYANDI R S, SRINIVASAN E, and KASARAGOD G R. Urban growth analysis of Tamil Nadu state, India using VIIRS DNB night data during 2012 and 2016[J]. Remote Sensing Applications:Society and Environment, 2021, 23: 100559. doi: 10.1016/j.rsase.2021.100559
    [9] RUAN Yuling, ZOU Yanhong, CHEN Minghui, et al. Monitoring the spatiotemporal trajectory of urban area hotspots using the SVM regression method based on NPP-VIIRS imagery[J]. ISPRS International Journal of Geo-Information, 2021, 10(6): 415. doi: 10.3390/ijgi10060415
    [10] ZHOU Meng, WANG Jun, CHEN Xi, et al. Nighttime smoke aerosol optical depth over U. S. rural areas: First retrieval from VIIRS moonlight observations[J]. Remote Sensing of Environment, 2021, 267: 112717. doi: 10.1016/j.rse.2021.112717
    [11] KOCIFAJ M and BARÁ S. Diffuse light around cities: New perspectives in satellite remote sensing of nighttime aerosols[J]. Atmospheric Research, 2022, 266: 105969. doi: 10.1016/j.atmosres.2021.105969
    [12] LI Jiajun, CAI Yancong, ZHANG Peng, et al. Satellite observation of a newly developed light-fishing “hotspot” in the open South China Sea[J]. Remote Sensing of Environment, 2021, 256: 112312. doi: 10.1016/j.rse.2021.112312
    [13] TIAN Hao, LIU Yang, TIAN Yongjun, et al. A comprehensive monitoring and assessment system for multiple fisheries resources in the Northwest Pacific based on satellite remote sensing technology[J]. Frontiers in Marine Science, 2022, 9: 808282. doi: 10.3389/fmars.2022.808282
    [14] LIU Yang, SAITOH S I, and HIRAWAKE T. Detection of squid and pacific saury fishing vessels around Japan using VIIRS Day/Night Band image[J]. Proceedings of the Asia-Pacific Advanced Network, 2015, 39: 28–39. doi: 10.7125/apan.39.3
    [15] STRAKA III W C, SEAMAN C J, BAUGH K, et al. Utilization of the Suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band for arctic ship tracking and fisheries management[J]. Remote Sensing, 2015, 7(1): 971–989. doi: 10.3390/rs70100971
    [16] ELVIDGE C D, ZHIZHIN M, BAUGH K, et al. Automatic boat identification system for VIIRS low light imaging data[J]. Remote Sensing, 2015, 7(3): 3020–3036. doi: 10.3390/rs70303020
    [17] COZZOLINO E and LASTA C A. Use of VIIRS DNB satellite images to detect jigger ships involved in the Illex argentinus fishery[J]. Remote Sensing Applications:Society and Environment, 2016, 4: 167–178. doi: 10.1016/j.rsase.2016.09.002
    [18] LEBONA B, KLEYNHANS W, CELIK T, et al. Ship detection using VIIRS sensor specific data[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1245–1247.
    [19] 郭刚刚, 樊伟, 薛嘉伦, 等. 基于NPP/VIIRS夜光遥感影像的作业灯光围网渔船识别[J]. 农业工程学报, 2017, 33(10): 245–251. doi: 10.11975/j.issn.1002-6819.2017.10.032

    GUO Ganggang, FAN Wei, XUE Jialun, et al. Identification for operating pelagic light-fishing vessels based on NPP/VIIRS low light imaging data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 245–251. doi: 10.11975/j.issn.1002-6819.2017.10.032
    [20] 黄明晶, 王雪梅, 蹇渊, 等. 基于海天线提取和混合灰度差的船舶检测方法[J]. 红外, 2021, 42(6): 29–33. doi: 10.3969/j.issn.1672-8785.2021.06.006

    HUANG Mingjing, WANG Xuemei, JIAN Yuan, et al. Ship detection method based on sea-sky line extraction and mixed gray difference[J]. Infrared, 2021, 42(6): 29–33. doi: 10.3969/j.issn.1672-8785.2021.06.006
    [21] QI Shengxiang, MA Jie, LIN Jin, et al. Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1451–1455. doi: 10.1109/LGRS.2015.2408355
    [22] ZHANG Xiangrong, WANG Guanchun, ZHU Peng, et al. GRS-Det: An anchor-free rotation ship detector based on Gaussian-mask in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3518–3531. doi: 10.1109/TGRS.2020.3018106
    [23] SCHWEGMANN C P, KLEYNHANS W, and SALMON B P. Synthetic aperture radar ship detection using Haar-like features[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2): 154–158. doi: 10.1109/LGRS.2016.2631638
    [24] CORBANE C, MARRE F, and PETIT M. Using SPOT-5 HRG data in panchromatic mode for operational detection of small ships in tropical area[J]. Sensors, 2008, 8(5): 2959–2973. doi: 10.3390/s8052959
    [25] JIANG Mingzhe, YANG Xuezhi, DONG Zhanyu, et al. Ship classification based on superstructure scattering features in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 616–620. doi: 10.1109/LGRS.2016.2514482
    [26] XU Fang, LIU Jinghong, DONG Chao, et al. Ship detection in optical remote sensing images based on wavelet transform and multi-level false alarm identification[J]. Remote Sensing, 2017, 9(10): 985. doi: 10.3390/rs9100985
    [27] AI Jiaqiu, MAO Yuxiang, LUO Qiwu, et al. Robust CFAR ship detector based on bilateral-trimmed-statistics of complex ocean scenes in SAR imagery: A closed-form solution[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1872–1890. doi: 10.1109/TAES.2021.3050654
    [28] AI Jiaqiu, LUO Qiwu, YANG Xuezhi, et al. Outliers-robust CFAR detector of Gaussian clutter based on the truncated-maximum-likelihood-estimator in SAR imagery[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 2039–2049. doi: 10.1109/TITS.2019.2911692
    [29] JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20892. doi: 10.1109/ACCESS.2018.2825376
    [30] TANG Jiexiong, DENG Chenwei, HUANG Guangbin, et al. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1174–1185. doi: 10.1109/TGRS.2014.2335751
    [31] LIU Qiangwei, XIANG Xiuqiao, YANG Zhou, et al. Arbitrary direction ship detection in remote-sensing images based on multitask learning and multiregion feature fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1553–1564. doi: 10.1109/TGRS.2020.3002850
    [32] AI Jiaqiu, TIAN Ruitian, LUO Qiwu, et al. Multi-scale rotation-invariant Haar-like feature integrated CNN-based ship detection algorithm of multiple-target environment in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10070–10087. doi: 10.1109/TGRS.2019.2931308
    [33] AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199
    [34] LI Jin, PENG Yiqun, TANG Jingtian, et al. Denoising of magnetotelluric data using K‐SVD dictionary training[J]. Geophysical Prospecting, 2021, 69(2): 448–473. doi: 10.1111/1365-2478.13058
    [35] FENG Deshan, LIU Shuo, YANG Jun, et al. The noise attenuation and stochastic clutter removal of ground penetrating radar based on the K-SVD dictionary learning[J]. IEEE Access, 2021, 9: 74879–74890. doi: 10.1109/ACCESS.2021.3081349
    [36] CANDÈS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted ℓ1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877–905. doi: 10.1007/s00041-008-9045-x
    [37] O'GRADY P D, PEARLMUTTER B A, and RICKARD S T. Survey of sparse and non‐sparse methods in source separation[J]. International Journal of Imaging Systems and Technology, 2005, 15(1): 18–33. doi: 10.1002/ima.20035
    [38] HURLEY N and RICKARD S. Comparing measures of sparsity[J]. IEEE Transactions on Information Theory, 2009, 55(10): 4723–4741. doi: 10.1109/TIT.2009.2027527
    [39] KARVANEN J and CICHOCKI A. Measuring sparseness of noisy signals[C]. 4th International Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, 2003: 125–130.
    [40] ELVIDGE C D, GHOSH T, BAUGH K, et al. Rating the effectiveness of fishery closures with visible infrared imaging radiometer suite boat detection data[J]. Frontiers in Marine Science, 2018, 5: 132. doi: 10.3389/fmars.2018.00132
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  739
  • HTML全文浏览量:  310
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-06-20
  • 网络出版日期:  2022-06-30
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回