高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见光通信中融合VOOK和分层OFDM的高效频谱混合调制方法

李宝龙 施建锋 吴勤勤 冯斯梦

李宝龙, 施建锋, 吴勤勤, 冯斯梦. 可见光通信中融合VOOK和分层OFDM的高效频谱混合调制方法[J]. 电子与信息学报, 2022, 44(8): 2639-2648. doi: 10.11999/JEIT220368
引用本文: 李宝龙, 施建锋, 吴勤勤, 冯斯梦. 可见光通信中融合VOOK和分层OFDM的高效频谱混合调制方法[J]. 电子与信息学报, 2022, 44(8): 2639-2648. doi: 10.11999/JEIT220368
LI Baolong, SHI Jianfeng, WU Qinqin, FENG Simeng. Spectrum-Efficient Hybrid Modulation Based on VOOK and Layered OFDM for Visible Light Communications[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2639-2648. doi: 10.11999/JEIT220368
Citation: LI Baolong, SHI Jianfeng, WU Qinqin, FENG Simeng. Spectrum-Efficient Hybrid Modulation Based on VOOK and Layered OFDM for Visible Light Communications[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2639-2648. doi: 10.11999/JEIT220368

可见光通信中融合VOOK和分层OFDM的高效频谱混合调制方法

doi: 10.11999/JEIT220368
基金项目: 国家自然科学基金(62001219),江苏省自然科学基金(BK20190582、BK20210641),东南大学移动通信国家重点实验室开放研究基金(2021D11),江苏省高层次创新创业人才引进计划(JSSCBS20210159),江苏省高等学校自然科学基金(20KJB510037)
详细信息
    作者简介:

    李宝龙:男,1989年生,博士,讲师,研究方向为可见光通信、无线通信

    施建锋:男,1994年生,博士,讲师,研究方向为无线通信

    吴勤勤:男,1991年生,博士,讲师,研究方向为光通信器件

    冯斯梦:女,1993年生,博士,副研究员,研究方向为可见光通信、无线光通信

    通讯作者:

    冯斯梦 simeng-feng@nuaa.edu.cn

  • 中图分类号: TN929.11

Spectrum-Efficient Hybrid Modulation Based on VOOK and Layered OFDM for Visible Light Communications

Funds: The National Natural Science Foundation of China (62001219), The Natural Science Foundation of Jiangsu Province (BK20190582, BK20210641), The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2021D11), The Shuangchuang Talent Program of Jiangsu Province (JSSCBS20210159), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB510037)
  • 摘要: 为了满足可见光通信(VLC)的照明和高速率数据传输的双重需求,该文提出一种融合可变开关键控(VOOK)和分层正交频分复用(OFDM)的高效频谱混合调制。首先针对分层OFDM调制方法设计了相应的VOOK信号,避免了VOOK对分层OFDM信息传输的干扰。然后,为了保证混合调制信号工作在发光二极管(LED)的线性区间,提出一种全新的重构分层光OFDM(RLO-OFDM),并构建VOOK-RLO-OFDM混合调制方法,实现了调光控制和高效频谱数据传输的双重功能。混合调制能够并行地进行VOOK和RLO-OFDM的信号检测,同时,RLO-OFDM的信号检测可以采用标准的OFDM接收机,无须依赖串行干扰消除方式,显著地降低了接收复杂度和处理时延。仿真结果表明,所提方法能够实现线性调光控制,且具有高效的频谱效率。
  • 图  1  采用$L = 2$, 3, 4层的频域结构示意图

    图  2  提出的混合调制流程框图

    图  3  混合调制的接收流程框图

    图  4  提出混合调制方法实现的调光水平与数据占空比${\delta _{\text{d}}}$的关系

    图  5  提出的RLO-OFDM方法的PAPR性能

    图  6  在不同比例因子$\alpha $下,提出的混合调制方法的BER性能

    图  7  不同调光水平下可调光调制方法的频谱效率

  • [1] 迟楠, 贾俊连. 面向6G的可见光通信[J]. 中兴通讯技术, 2020, 26(2): 11–19. doi: 10.12142/ZTETJ.202002003

    CHI Nan and JIA Junlian. Visible light communication towards 6G[J]. ZTE Technology Journal, 2020, 26(2): 11–19. doi: 10.12142/ZTETJ.202002003
    [2] 商建东, 孙浩博, 王法松. 基于SVM的广义空移键控可见光通信系统信号检测算法[J]. 电子与信息学报, 2021, 43(10): 2894–2901. doi: 10.11999/JEIT200711

    SHANG Jiandong, SUN Haobo, and WANG Fasong. SVM-aided signal detection in generalized space shift keying visible light communication system[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2894–2901. doi: 10.11999/JEIT200711
    [3] LE PRIOL R, HÉLARD M, HAESE S, et al. Experimental comparison of PAM and CAP modulation for visible light communication under illumination constraints[J]. IEEE Photonics Journal, 2022, 14(2): 7315811. doi: 10.1109/JPHOT.2022.3148467
    [4] IEEE. IEEE Standard 802.15. 7TM-2018 IEEE standard for local and metropolitan area networks—Part 15.7: Short-range optical wireless communications[S]. New York: IEEE, 2019.
    [5] LEE K and PARK H. Modulations for visible light communications with dimming control[J]. IEEE Photonics Technology Letters, 2011, 23(16): 1136–1138. doi: 10.1109/LPT.2011.2157676
    [6] RAJ R, JAISWAL S, and DIXIT A. Dimming-based modulation schemes for visible light communication: Spectral analysis and ISI mitigation[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1777–1798. doi: 10.1109/OJCOMS.2021.3098105
    [7] WANG Tengjiao, YANG Fang, SONG Jian, et al. Dimming techniques of visible light communications for human-centric illumination networks: State-of-the-art, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(4): 88–95. doi: 10.1109/MWC.001.1900388
    [8] LI Baolong, FENG Simeng, and XU Wei. Spectrum-efficient hybrid PAM-DMT for intensity-modulated optical wireless communication[J]. Optics Express, 2020, 28(9): 12621–12637. doi: 10.1364/OE.392127
    [9] YANG Yang, ZENG Zhimin, CHENG Julian, et al. An enhanced DCO-OFDM scheme for dimming control in visible light communication systems[J]. IEEE Photonics Journal, 2016, 8(3): 7904813. doi: 10.1109/JPHOT.2016.2570019
    [10] NGUYEN T, ISLIM M S, CHEN Cheng, et al. iDim: Practical implementation of index modulation for LiFi dimming[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 1880–1891. doi: 10.1109/TGCN.2021.3089758
    [11] ELGALA H and LITTLE T D C. Reverse polarity optical-OFDM (RPO-OFDM): Dimming compatible OFDM for gigabit VLC links[J]. Optics Express, 2013, 21(20): 24288–24299. doi: 10.1364/OE.21.024288
    [12] ZHANG Xiaoyu, BABAR Z, PETROPOULOS P, et al. The evolution of optical OFDM[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1430–1457. doi: 10.1109/COMST.2021.3065907
    [13] WANG Qi, QIAN Chen, GUO Xuhan, et al. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission[J]. Optics Express, 2015, 23(9): 12382–12393. doi: 10.1364/OE.23.012382
    [14] ISLIM M S and HAAS H. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications[J]. Optics Express, 2016, 24(11): 11932–11949. doi: 10.1364/OE.24.011932
    [15] BAI Ruowen and HRANILOVIC S. Absolute value layered ACO-OFDM for intensity-modulated optical wireless channels[J]. IEEE Transactions on Communications, 2020, 68(11): 7098–7110. doi: 10.1109/TCOMM.2020.3010986
    [16] WANG Qi, WANG Zhaocheng, DAI Linglong, et al. Dimmable visible light communications based on multilayer ACO-OFDM[J]. IEEE Photonics Journal, 2016, 8(3): 7905011. doi: 10.1109/JPHOT.2016.2573040
    [17] WANG T Q and HUANG Xiaojing. Fractional reverse polarity optical OFDM for high speed dimmable visible light communications[J]. IEEE Transactions on Communications, 2018, 66(4): 1565–1578. doi: 10.1109/TCOMM.2017.2787706
    [18] SUN Yaqi, YANG Fang, and GAO Junnan. Novel dimmable visible light communication approach based on hybrid LACO-OFDM[J]. Journal of Lightwave Technology, 2018, 36(20): 4942–4951. doi: 10.1109/JLT.2018.2866825
    [19] LI Baolong, XU Wei, FENG Simeng, et al. Spectral-efficient reconstructed LACO-OFDM transmission for dimming compatible visible light communications[J]. IEEE Photonics Journal, 2019, 11(1): 7900714. doi: 10.1109/JPHOT.2019.2892849
  • 加载中
图(7)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  241
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-07-11
  • 录用日期:  2022-07-13
  • 网络出版日期:  2022-07-14
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回