高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于余幂-激活离散超混沌加密的多参数加权分数傅里叶变换安全通信方法

孟庆微 王西康 齐子森 张悦

孟庆微, 王西康, 齐子森, 张悦. 基于余幂-激活离散超混沌加密的多参数加权分数傅里叶变换安全通信方法[J]. 电子与信息学报, 2023, 45(5): 1688-1696. doi: 10.11999/JEIT220364
引用本文: 孟庆微, 王西康, 齐子森, 张悦. 基于余幂-激活离散超混沌加密的多参数加权分数傅里叶变换安全通信方法[J]. 电子与信息学报, 2023, 45(5): 1688-1696. doi: 10.11999/JEIT220364
MENG Qingwei, WANG Xikang, QI Zisen, ZHANG Yue. Multiple Parameters Weighted-type FRactional Fourier Transform Secure Communication Method Based on Cosine Power-Activation Discrete Hyperchaotic Encryption[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1688-1696. doi: 10.11999/JEIT220364
Citation: MENG Qingwei, WANG Xikang, QI Zisen, ZHANG Yue. Multiple Parameters Weighted-type FRactional Fourier Transform Secure Communication Method Based on Cosine Power-Activation Discrete Hyperchaotic Encryption[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1688-1696. doi: 10.11999/JEIT220364

基于余幂-激活离散超混沌加密的多参数加权分数傅里叶变换安全通信方法

doi: 10.11999/JEIT220364
基金项目: 国家自然科学基金(61906156)
详细信息
    作者简介:

    孟庆微:男,副教授,研究方向为物理层安全、通信信号处理

    王西康:男,硕士生,研究方向为物理层安全、混沌加密

    齐子森:男,副教授,研究方向为多维信号处理

    张悦:男,副教授,研究方向为深度强化学习、博弈论

    通讯作者:

    王西康 1564851402@qq.com

  • 中图分类号: TN918.91

Multiple Parameters Weighted-type FRactional Fourier Transform Secure Communication Method Based on Cosine Power-Activation Discrete Hyperchaotic Encryption

Funds: The National Natural Science Foundation of China (61906156)
  • 摘要: 为提高物理层安全传输性能,该文提出一种新的基于2维余幂-激活(2D-CPA)离散超混沌加密的多参数加权分数傅里叶变换(MP-WFRFT)安全通信方法。首先,将激活函数和余弦函数作为非线性因子引入1维立方(cubic)混沌映射,构造2维混沌映射。非线性因子可对原始cubic混沌映射的迭代过程进行扰动,从而获得更加饱满的相轨。利用分岔图、相图、Lyapunov指数谱等对提出的2维混沌映射动力学特性进行了验证。结果表明,构造的2维混沌序列随机性良好,可进入超混沌状态。然后,利用余幂-激活离散超混沌序列分别构建幅度变换矩阵、相位旋转矩阵和MP-WFRFT参数池,完成对星座幅相加密,以及MP-WFRFT动态变换加密过程,进一步消除数据统计特征,同时提升MP-WFRFT变换的抗参数扫描性能。数值仿真结果表明,加密数据的星座图呈类高斯分布,且传输系统对密钥的敏感性良好。
  • 图  1  混沌系统不同初始值下特征值分布图

    图  2  2D-CPA混沌的相图、分岔图以及Lyapunov指数谱

    图  3  基于2D-CPA和MP-WFRFT通信系统模型

    图  4  QPSK, 16QAM信号的原始分布以及加密后分布

    图  5  不同参数差异下系统保密容量

    图  6  误比特率曲线分析

    图  7  同类方案安全性能对比分析

    表  1  两类混沌映射的Lyapunov指数、ApEn和PE

    混沌映射最大Lyapunov指数ApEnPE
    cubic0.65120.64030.9290
    2D-CPA0.80540.96890.9955
    下载: 导出CSV

    表  2  算法时间复杂度分析

    算法名称时间复杂度
    2D-CPAO(nlog2(n))
    文献[23]O(n2)
    文献[24]O(nlog2(n))
    文献[25]O(n2)
    下载: 导出CSV

    表  3  仿真参数

    特性参数
    调制方式QPSK, 16QAM
    信道类型AWGN
    分组长度512
    信号长度262144
    下载: 导出CSV
  • [1] WEN Shiping, ZENG Zhigang, HUANG Tingwen, et al. Lag synchronization of switched neural networks via neural activation function and applications in image encryption[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(7): 1493–1502. doi: 10.1109/TNNLS.2014.2387355
    [2] HU Xiaonan, YANG Xuelin, SHEN Zanwei, et al. Chaos-based partial transmit sequence technique for physical layer security in OFDM-PON[J]. IEEE Photonics Technology Letters, 2015, 27(23): 2429–2432. doi: 10.1109/LPT.2015.2466092
    [3] MATTHEWS R. On the derivation of a “Chaotic” encryption algorithm[J]. Cryptologia, 1989, 13(1): 29–42. doi: 10.1080/0161-118991863745
    [4] ARIF J, KHAN M A, GHALEB B, et al. A novel chaotic permutation-substitution image encryption scheme based on logistic map and random substitution[J]. IEEE Access, 2022, 10: 12966–12982. doi: 10.1109/ACCESS.2022.3146792
    [5] 黄冬梅, 耿霞, 魏立斐, 等. 基于Henon映射的加密遥感图像的安全检索方案[J]. 软件学报, 2016, 27(7): 1729–1740. doi: 10.13328/j.cnki.jos.005039

    HUANG Dongmei, GENG Xia, WEI Lifei, et al. A secure query scheme on encrypted remote sensing images based on Henon mapping[J]. Journal of Software, 2016, 27(7): 1729–1740. doi: 10.13328/j.cnki.jos.005039
    [6] ALI T S and ALI R. A novel medical image signcryption scheme using TLTS and Henon chaotic map[J]. IEEE Access, 2020, 8: 71974–71992. doi: 10.1109/ACCESS.2020.2987615
    [7] GILL H S, GILL S S, and BHATIA K S. A novel chaos-based encryption approach for future-generation passive optical networks using SHA-2[J]. Journal of Optical Communications and Networking, 2017, 9(12): 1184–1190. doi: 10.1364/JOCN.9.001184
    [8] LIU Fang. WFRFT secure communication method based on chaotic parameter pool[J]. Mathematical Problems in Engineering, 2019, 2019: 1265930. doi: 10.1155/2019/1265930
    [9] ZHANG Lijia, XIN Xiangjun, LIU Bo, et al. Secure OFDM-PON based on chaos scrambling[J]. IEEE Photonics Technology Letters, 2011, 23(14): 998–1000. doi: 10.1109/LPT.2011.2149512
    [10] 岳敖, 李为, 马东堂, 等. 拉丁阵和幅相变换相结合的物理层加密传输算法[J]. 信号处理, 2016, 32(6): 660–668. doi: 10.16798/j.issn.1003-0530.2016.06.004

    YUE Ao, LI Wei, MA Dongtang, et al. A novel physical layer encryption algorithm combined Latin rectangle and phase-amplitude mask[J]. Journal of Signal Processing, 2016, 32(6): 660–668. doi: 10.16798/j.issn.1003-0530.2016.06.004
    [11] HU Zhouyi and CHAN C K. A 7-D hyperchaotic system-based encryption scheme for secure fast-OFDM-PON[J]. Journal of Lightwave Technology, 2018, 36(16): 3373–3381. doi: 10.1109/JLT.2018.2841042
    [12] LIU Zhentao, WU Chunxiao, WANG Jun, et al. A color image encryption using dynamic DNA and 4-D memristive hyper-chaos[J]. IEEE Access, 2019, 7: 78367–78378. doi: 10.1109/ACCESS.2019.2922376
    [13] SUN Shuliang. A novel hyperchaotic image encryption scheme based on DNA encoding, pixel-level scrambling and bit-level scrambling[J]. IEEE Photonics Journal, 2018, 10(2): 7201714. doi: 10.1109/JPHOT.2018.2817550
    [14] SULTAN A, YANG Xuelin, HAJOMER A A E, et al. Chaotic distribution of QAM symbols for secure OFDM signal transmission[J]. Optical Fiber Technology, 2019, 47: 61–65. doi: 10.1016/j.yofte.2018.11.022
    [15] 刘思聪, 李春彪, 李泳新. 基于指数-余弦离散混沌映射的图像加密算法研究[J]. 电子与信息学报, 2022, 44(5): 1754–1762. doi: 10.11999/JEIT210270

    LIU Sicong, LI Chunbiao, and LI Yongxin. A novel image encryption algorithm based on exponent-cosine chaotic mapping[J]. Journal of Electronics &Information Technology, 2022, 44(5): 1754–1762. doi: 10.11999/JEIT210270
    [16] 李春彪, 赵云楠, 李雅宁, 等. 基于正弦反馈Logistic混沌映射的图像加密算法及其FPGA实现[J]. 电子与信息学报, 2021, 43(12): 3766–3774. doi: 10.11999/JEIT200575

    LI Chunbiao, ZHAO Yunnan, LI Yaning, et al. An image encryption algorithm based on logistic chaotic mapping with sinusoidal feedback and its FPGA implementation[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3766–3774. doi: 10.11999/JEIT200575
    [17] 蒋东华, 朱礼亚, 沈子懿, 等. 结合二维压缩感知和混沌映射的双图像视觉安全加密算法[J]. 西安交通大学学报, 2022, 56(2): 139–148. doi: 10.7652/xjtuxb202202015

    JIANG Donghua, ZHU Liya, SHEN Ziyi, et al. A double image visual security encryption algorithm combining 2D compressive sensing and chaotic mapping[J]. Journal of Xi'an Jiaotong University, 2022, 56(2): 139–148. doi: 10.7652/xjtuxb202202015
    [18] FANG Xiaojie, SHA Xuejun, and LI Yue. MP-WFRFT and constellation scrambling based physical layer security system[J]. China Communications, 2016, 13(2): 138–145.
    [19] 倪磊, 达新宇, 胡航, 等. 基于改进Logistic相位扰码的抗截获通信[J]. 华中科技大学学报:自然科学版, 2019, 47(6): 35–40. doi: 10.13245/j.hust.190607

    NI Lei, DA Xinyu, HU Hang, et al. Research on anti-interception communication based on improved Logistic phase scrambling[J]. Journal of Huazhong University of Science and Technology:Nature Science Edition, 2019, 47(6): 35–40. doi: 10.13245/j.hust.190607
    [20] YUAN Guogang, CHEN Zili, GAO Xijun, et al. Enhancing the security of chaotic direct sequence spread spectrum communication through WFRFT[J]. IEEE Communications Letters, 2021, 25(9): 2834–2838. doi: 10.1109/LCOMM.2021.3096388
    [21] 杨振鑫. WFRFT信号参数识别方法研究[D]. [硕士论文], 哈尔滨工业大学, 2020.

    YANG Zhenxin. Studies on the methods of parameter identification of WFRFT signal[D]. [Master dissertation], Harbin Institute of Technology, 2020.
    [22] LIU Fang. A cross-hierarchical scanning method based SP-4-WFRFT for digital communication signals[J]. Mathematical Problems in Engineering, 2018, 2018: 6580146. doi: 10.1155/2018/6580146
    [23] 肖成龙, 孙颖, 林邦姜, 等. 基于神经网络与复合离散混沌系统的双重加密方法[J]. 电子与信息学报, 2020, 42(3): 687–694. doi: 10.11999/JEIT190213

    XIAO Chenglong, SUN Ying, LIN Bangjiang, et al. Double encryption method based on neural network and composite discrete chaotic system[J]. Journal of Electronics &Information Technology, 2020, 42(3): 687–694. doi: 10.11999/JEIT190213
    [24] ZHANG Wei, ZHANG Chongfu, CHEN Chen, et al. Hybrid chaotic confusion and diffusion for physical layer security in OFDM-PON[J]. IEEE Photonics Journal, 2017, 9(2): 7201010. doi: 10.1109/JPHOT.2017.2683501
    [25] KHAN M and MASOOD F. A novel chaotic image encryption technique based on multiple discrete dynamical maps[J]. Multimedia Tools and Applications, 2019, 78(18): 26203–26222. doi: 10.1007/s11042-019-07818-4
    [26] ZHANG Wei, ZHANG Chongfu, JIN Wei, et al. Chaos coding-based QAM IQ-encryption for improved security in OFDMA-PON[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1964–1967. doi: 10.1109/LPT.2014.2343616
    [27] SHEN Zanwei, YANG Xuelin, HE Hao, et al. Secure transmission of optical DFT-S-OFDM data encrypted by digital chaos[J]. IEEE Photonics Journal, 2016, 8(3): 7904609. doi: 10.1109/JPHOT.2016.2564438
    [28] ZHANG Chongfu, ZHANG Wei, CHEN Chen, et al. Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding[J]. Journal of Lightwave Technology, 2018, 36(9): 1706–1712. doi: 10.1109/JLT.2018.2789435
    [29] SHANNON C E. Communication theory of secrecy systems[J]. The Bell System Technical Journal, 1949, 28(4): 656–715. doi: 10.1002/j.1538-7305.1949.tb00928.x
    [30] 黄永新, 房宵杰, 沙学军. 基于二维加权分数傅里叶变换的安全传输方法[J]. 哈尔滨工业大学学报, 2022, 54(5): 11–17. doi: 10.11918/202011077

    HUANG Yongxin, FANG Xiaojie, and SHA Xuejun. A secure transmission method based on two-dimensional weighted fractional Fourier transform[J]. Journal of Harbin Institute of Technology, 2022, 54(5): 11–17. doi: 10.11918/202011077
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  250
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-07-14
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2023-05-10

目录

    /

    返回文章
    返回