高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多用户认知非正交多址接入系统中断性能分析及功率分配算法

申滨 张楠 蒋慧林 董坤明

申滨, 张楠, 蒋慧林, 董坤明. 多用户认知非正交多址接入系统中断性能分析及功率分配算法[J]. 电子与信息学报, 2023, 45(4): 1201-1210. doi: 10.11999/JEIT220278
引用本文: 申滨, 张楠, 蒋慧林, 董坤明. 多用户认知非正交多址接入系统中断性能分析及功率分配算法[J]. 电子与信息学报, 2023, 45(4): 1201-1210. doi: 10.11999/JEIT220278
SHEN Bin, ZHANG Nan, JIANG Huilin, DONG Kunming. Outage Performance Analysis and Power Allocation Algorithm of Multi-user Cognitive Radio Non-Orthogonal Multiple Access System[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1201-1210. doi: 10.11999/JEIT220278
Citation: SHEN Bin, ZHANG Nan, JIANG Huilin, DONG Kunming. Outage Performance Analysis and Power Allocation Algorithm of Multi-user Cognitive Radio Non-Orthogonal Multiple Access System[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1201-1210. doi: 10.11999/JEIT220278

多用户认知非正交多址接入系统中断性能分析及功率分配算法

doi: 10.11999/JEIT220278
基金项目: 国家自然科学基金 (62071078)
详细信息
    作者简介:

    申滨:男,教授,研究方向为无线通信信号处理

    张楠:女,硕士生,研究方向为非正交多址接入

    蒋慧林:女,硕士,研究方向为非正交多址接入

    董坤明:男,硕士,研究方向为认知无线电

    通讯作者:

    申滨 shenbin@cqupt.edu.cn

  • 中图分类号: TN929.5

Outage Performance Analysis and Power Allocation Algorithm of Multi-user Cognitive Radio Non-Orthogonal Multiple Access System

Funds: The National Natural Science Foundation of China (62071078)
  • 摘要: 非正交多址接入(NOMA)是5G网络关键候选技术之一,其与认知无线电(CR)技术相结合形成系统(CR-NOMA),能够实现更高的频谱效率及更大的吞吐量。该文将直传与中继协同传输(CDRT)方案引入多用户CR-NOMA系统,其中CDRT表示次级源(SS)直接与近端次级用户通信,而仅通过中继(R)与多个远端次级用户通信。在非理想自干扰消除和全双工(FD)中继情况下,推导了每个NOMA用户中断概率(OP)的精确闭式表达。此外,在该系统模型下分析SS, R和用户的收益最优化问题,提出一种基于收益的两阶段迭代功率分配算法。仿真结果显示,在高信噪比(30 dB)条件下,与随机功率分配及平均功率分配方案相比,该文所提算法的用户和速率、SS总收益、R总收益分别可最高提升13%, 56%及26%。蒙特卡罗仿真验证了理论分析与实验结果的一致性。
  • 图  1  FD-CR-NOMA系统模型

    图  2  干扰温度限制对信号OP的影响

    图  3  SNR对信号OP的影响

    图  4  不同方案下OP对比

    图  5  不同功率分配方案下总收益对比

    图  6  不同方案下用户和速率对比

    表  1  公式符号表

    公式符号符号含义
    ${h_{{\text{S}}{{\text{P}}_n}}}(1 \le n \le N)$SS与PD之间的信道系数
    $h_{{\text{SP}}}^{{\text{max}}}$SS与PD之间的最优信道系数
    $ {g_\varphi },\varphi \in \{ {\text{SR}},{\text{R}},{\text{R0}},{\text{R}}m\} (1 \le m \le M) $次级节点之间的信道系数
    ${I_{ {\text{PS} } } }{\text{~} }{\rm{CN}}(0,\tau {\sigma ^2})$PN对SN的干扰
    $\tau $ PN对SN的干扰因子
    ${T_{{\text{ITC}}}}$干扰温度限制
    $M$远端用户数量
    ${\alpha _0},{\alpha _m}(1 \le m \le M)$SS处用户功率分配因子
    $ P_{{\text{SS}}}^{\text{m}} $SS最大发射功率
    ${\rho _{{\text{SS}}}}$SS处对应的发射信噪比
    ${\rho _{\text{R}}}$R处对应的发射信噪比
    ${\beta _m}(1 \le m \le M)$R处用户功率分配因子
    ${\hat f_{ {\text{R0} } } }{\text{~} }{\rm{CN}}(0,\xi \sigma _{ {\text{R0} } }^{\text{2} })$${D_{\text{0}}}$处残余干扰信道系数
    ${\hat f_{\text{R} } }{\text{~} }{\rm{CN}}(0,\eta \sigma _{\text{R} }^{\text{2} })$R处的残余自干扰信道系数
    $\xi $${D_{\text{0}}}$处残余干扰因子
    $\eta $R处残余自干扰因子
    ${u_0},{u_m}(1 \le m \le M)$用户可达速率门限转换信噪比
    ${\mathcal{R}_0},{\mathcal{R}_m}(1 \le m \le M)$${D_{\text{0}}}$与R处信号实际可达速率
    下载: 导出CSV
    算法1 两阶段迭代功率分配算法
     输入:${\varOmega _i},0 \le i \le M + 1$, $\alpha _0^*$, $\alpha _1^*$
     输出:${\text{P}}{{\text{A}}^*}$
     (1)初始化$\alpha _0^* = \min (1,\alpha _0^*)$, $\alpha _1^* = \max (0,\alpha _1^*)$, $j = 1$
     (2)${P^*} = {\text{zeros} }({\text{1} },{{M - 1} })$, ${\text{P}}{{\text{A}}^*} = [\alpha _0^*,\alpha _1^*,{P^*}]$
     (3) ${\text{Whlie}}\;\;\;{\kern 1pt} j < M + 1$
     (4)   ${\text{If}}\;\;\;{\kern 1pt} \alpha _j^* = 0$
     (5)     ${P^*}(1,j) = {\alpha _j}$
     (6)   ${\text{ElseIf}}\;\;\;{\kern 1pt} \alpha _j^* > 0$且$j \leqslant M + 1$
     (7)     ${\alpha _{{\text{max}}}} = \alpha _j^*$
     (8)     通过上述最优化问题求解,计算${\alpha _j}$的最优解$\alpha _j^*$
     (9)     $\alpha _j^* = \min (1,\alpha _j^*)$
     (10)     $\alpha _{j + 1}^* = \max (0,{\alpha _{{\text{max}}}} - \alpha _j^*)$
     (11)     ${P^*}(1,j) = \alpha _j^*$
     (12)     ${P^*}(1,j + 1) = \alpha _{j + 1}^*$
     (13)     $j = j + 1$
     (14)   ${\text{EndIf}}$
     (15) ${\text{EndWhile}}$
    下载: 导出CSV

    表  2  仿真参数设置

    仿真参数参数取值
    $ {\alpha _0},{\alpha _1},{\alpha _2} $0.1,0.3,0.6
    ${r_{\text{0}}} = {r_{\text{1}}} = {r_{\text{2}}}$1 bit/(s·Hz)
    ${\beta _{\text{1}}},{\beta _{\text{2}}}$0.4,0.6
    ${P_{\text{SS} } }^{\rm{m}}/{\sigma ^{\text{2} } }$–10~40 dB
    ${P_{\text{R}}}/{\sigma ^{\text{2}}}$10 dB
    $ {\text{|}}{g_\varphi }{{\text{|}}^{\text{2}}},|{h_{{\text{S}}{{\text{P}}_n}}}{|^2} $服从$\dfrac{1}{2}{ {\text{e} }^{ - \frac{1}{2}x} }$分布
    $|{\hat f_{{\text{R0}}}}{|^2},|{\hat f_{\text{R}}}{|^2}$服从$\dfrac{1}{ {2 \times 0.001} }{ {\text{e} }^{ - \frac{1}{ {2\; \times \;0.001} }x} }$分布
    $\tau $0.01
    下载: 导出CSV
  • [1] BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74–80. doi: 10.1109/MCOM.2014.6736746
    [2] TIMOTHEOU S and KRIKIDIS I. Fairness for non-orthogonal multiple access in 5G systems[J]. IEEE Signal Processing Letters, 2015, 22(10): 1647–1651. doi: 10.1109/LSP.2015.2417119
    [3] 3GPP. Study on downlink multiuser superposition transmission (MUST) for LTE (Release 13)[R]. TR36.859, 2015.
    [4] BABU V S, DEEPAN N, and REBEKKA B. Performance analysis of cooperative full duplex NOMA system in cognitive radio networks[C]. 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 2020: 84–87.
    [5] IM G and LEE J H. Outage probability for cooperative NOMA systems with imperfect SIC in cognitive radio networks[J]. IEEE Communications Letters, 2019, 23(4): 692–695. doi: 10.1109/LCOMM.2019.2903040
    [6] ARZYKULOV S, TSIFTSIS T A, NAURYZBAYEV G, et al. Outage performance of cooperative underlay CR-NOMA with imperfect CSI[J]. IEEE Communications Letters, 2019, 23(1): 176–179. doi: 10.1109/LCOMM.2018.2878730
    [7] SUN Fan, DE CARVALHO E, POPOVSKI P, et al. Coordinated direct and relay transmission with linear non-regenerative relay beamforming[J]. IEEE Signal Processing Letters, 2012, 19(10): 680–683. doi: 10.1109/LSP.2012.2211588
    [8] KADER M F, SHIN S Y, and LEUNG V C M. Full-duplex non-orthogonal multiple access in cooperative relay sharing for 5G systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5831–5840. doi: 10.1109/TVT.2018.2799939
    [9] KIM J B and LEE I H. Non-orthogonal multiple access in coordinated direct and relay transmission[J]. IEEE Communications Letters, 2015, 19(11): 2037–2040. doi: 10.1109/LCOMM.2015.2474856
    [10] ZHONG Caijun and ZHANG Zhaoyang. Non-orthogonal multiple access with cooperative full-duplex relaying[J]. IEEE Communications Letters, 2016, 20(12): 2478–2481. doi: 10.1109/LCOMM.2016.2611500
    [11] DONG Kunming, SHEN Bin, JIANG Huilin, et al. Outage performance analysis of underlay CR-NOMA network with coordinated direct and relay transmissions[C]. The 94th Vehicular Technology Conference (VTC2021-Fall), Norman, USA, 2021: 1–6.
    [12] PEI Xinyue, YU Hua, WEN Miaowen, et al. NOMA-based coordinated direct and relay transmission with a half-duplex/full-duplex relay[J]. IEEE Transactions on Communications, 2020, 68(11): 6750–6760. doi: 10.1109/TCOMM.2020.3017002
    [13] VU T H, NGUYEN T V, DA COSTA D B, et al. Performance analysis and deep learning design of underlay cognitive NOMA-based CDRT networks with imperfect SIC and co-channel interference[J]. IEEE Transactions on Communications, 2021, 69(12): 8159–8174. doi: 10.1109/TCOMM.2021.3110209
    [14] LEE I H and JUNG H. User selection and power allocation for downlink NOMA systems with quality-based feedback in Rayleigh fading channels[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1924–1927. doi: 10.1109/LWC.2020.3008174
    [15] 于宝泉, 蔡跃明, 胡健伟. 认知无线电非正交多址接入随机网络物理层安全性能分析[J]. 电子与信息学报, 2020, 42(4): 950–956. doi: 10.11999/JEIT190049

    YU Baoquan, CAI Yueming, and HU Jianwei. Performance analysis of physical layer security for cognitive radio non-orthogonal multiple access random network[J]. Journal of Electronics &Information Technology, 2020, 42(4): 950–956. doi: 10.11999/JEIT190049
    [16] SHEN Zhou, LIU Gang, DING Zhiguo, et al. Optimal power allocations for 5G non-orthogonal multiple access with half/full duplex relaying[C]. 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–7.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  246
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-08-03
  • 网络出版日期:  2202-08-04
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回