高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层多参数多项加权分数阶傅里叶变换复合调制通信信号设计方法

杨宇晓 高萍

杨宇晓, 高萍. 多层多参数多项加权分数阶傅里叶变换复合调制通信信号设计方法[J]. 电子与信息学报, 2023, 45(4): 1192-1200. doi: 10.11999/JEIT220266
引用本文: 杨宇晓, 高萍. 多层多参数多项加权分数阶傅里叶变换复合调制通信信号设计方法[J]. 电子与信息学报, 2023, 45(4): 1192-1200. doi: 10.11999/JEIT220266
YANG Yuxiao, GAO Ping. Design Method of Multi-layer Multi-Parameter Multi-term Weighted-type FRactional Fourier Transform Composite Modulation Communication Signal[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1192-1200. doi: 10.11999/JEIT220266
Citation: YANG Yuxiao, GAO Ping. Design Method of Multi-layer Multi-Parameter Multi-term Weighted-type FRactional Fourier Transform Composite Modulation Communication Signal[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1192-1200. doi: 10.11999/JEIT220266

多层多参数多项加权分数阶傅里叶变换复合调制通信信号设计方法

doi: 10.11999/JEIT220266
基金项目: 国家自然科学基金(61701226)
详细信息
    作者简介:

    杨宇晓:男,博士,副研究员,研究方向为射频隐身技术、卫星通信等

    高萍:女,硕士,研究方向为射频隐身技术、卫星通信等

    通讯作者:

    高萍 3221606485@qq.com

  • 中图分类号: TN918.91

Design Method of Multi-layer Multi-Parameter Multi-term Weighted-type FRactional Fourier Transform Composite Modulation Communication Signal

Funds: The National Natural Science Foundation of China (61701226)
  • 摘要: 为提高卫星通信信号的安全性能,该文提出一种多层多参数多项加权分数阶傅里叶变换(MWFRFT)复合调制通信信号设计方法。该方法针对传统多项加权分数阶傅里叶变换单层结构的被扫描威胁,将MWFRFT扩展至不同加权系数的多层结构,降低了系统的被扫描概率。同时,多层多参数MWFRFT(MPMWFRFT)系统通过对控制参数集的优化设计,解决了多层结构下的通信信号调制特征模拟。针对复杂电磁环境场景中的目标寄生信号和窄带信号干扰,引入扩频机制,设计了3层多项加权分数阶傅里叶变换和直接序列扩频复合调制系统(TL-MWFRFT-DSSS)。仿真结果表明,该方法在保证较好通信性能的前提下,实现了多层通信信号的调制特征模拟,显著提高了系统的抗扫描性能。
  • 图  1  TL-MWFRFT-DSSS复合调制系统框图

    图  2  原始信号与寄生信号星座图

    图  3  高斯信道下系统误码率曲线

    图  4  叠加寄生信号干扰的复合调制系统误码率曲线

    图  5  叠加窄带干扰信号的复合调制系统误码率曲线

    图  6  采用最优控制参数集的复合调制信号星座图

    图  7  采用随机控制参数集的复合调制信号星座图

    图  8  $ \Delta \alpha = 0.001 $时系统误码率曲线

    图  9  $ \Delta V = 1 $时系统误码率曲线

    图  10  不同状态下的窃听方解调误码率曲线

    图  11  3层MWFRFT系统$ \alpha $抗扫描特性

    图  12  3层MWFRFT系统中参数$ V $抗扫描特性

    表  1  控制参数集

    WFRFT项数最优控制参数集随机控制参数集
    $ \alpha $V$ \alpha $V
    4-WFRFT2.001 000 0(10,4,5,7;5,3,9,1)0.504 2(7,7,7,3;8,8,1,3)
    6-WFRFT3.000 496 6(6,8,2,7,6,6;3,8,8,9,2,10)5.446 9(9,8,9,4,3,5;5,9,7,3,4,8)
    8-WFRFT3.999 130 0(2,3,5,8,1,4,3,7;3,9,1,3,6,6,2,3)1.680 0(3,2,5,0,2,5,2,0;2,0,2,0,3,3,1,6)
    下载: 导出CSV
  • [1] 李一楠, 张林让, 卢海梁, 等. 基于地基综合孔径微波辐射计的空中目标无源探测技术研究[J]. 电子与信息学报, 2021, 43(5): 1243–1250. doi: 10.11999/JEIT200166

    LI Yi’nan, ZHANG Linrang, LU Hailiang, et al. Research on the aerial target detection by ground-based synthesis aperture microwave radiometers[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1243–1250. doi: 10.11999/JEIT200166
    [2] 王谦喆, 何召阳, 宋博文, 等. 射频隐身技术研究综述[J]. 电子与信息学报, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945

    WANG Qianzhe, HE Zhaoyang, SONG Bowen, et al. Overview on RF stealth technology research[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945
    [3] MEI Lin, SHA Xuejun, RAN Qinwen, et al. Research on the application of 4-weighted fractional Fourier transform in communication system[J]. Science China Information Sciences, 2010, 53(6): 1251–1260. doi: 10.1007/s11432-010-0073-1
    [4] LIANG Yuan, DA Xinyu, WU Jialiang, et al. WFRFT modulation recognition based on HOC and optimal order searching algorithm[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 462–470. doi: 10.21629/JSEE.2018.03.03
    [5] LIANG Yuan, XIANG Xin, SUN Ye, et al. Novel modulation recognition for WFRFT-based system using 4th-order cumulants[J]. IEEE Access, 2019, 7: 86018–86025. doi: 10.1109/ACCESS.2019.2925691
    [6] LIANG Yuan, DA Xinyu, XU Ruiyang, et al. Research on constellation-splitting criterion in multiple parameters WFRFT modulations[J]. IEEE Access, 2018, 6: 34354–34364. doi: 10.1109/ACCESS.2018.2848918
    [7] 王浩波, 达新宇, 徐瑞阳, 等. 双极化卫星MP-WFRFT星座裂变安全传输技术[J]. 西安电子科技大学学报, 2020, 47(3): 121–127. doi: 10.19665/j.issn1001-2400.2020.03.017

    WANG Haobo, DA Xinyu, XU Ruiyang, et al. Constellation splitting security transmission technology based on the multi-parameter weighted-type fractional Fourier transform for dual-polarized satellites[J]. Journal of Xidian University, 2020, 47(3): 121–127. doi: 10.19665/j.issn1001-2400.2020.03.017
    [8] 梁源, 达新宇. 基于多参数加权分数阶傅里叶变换的星座预编码系统研究与实现[J]. 电子与信息学报, 2018, 40(4): 825–831. doi: 10.11999/JEIT170673

    LIANG Yuan and DA Xinyu. Analysis and implementation of constellation precoding system based on multiple parameters weighted-type fractional Fourier transform[J]. Journal of Electronics &Information Technology, 2018, 40(4): 825–831. doi: 10.11999/JEIT170673
    [9] 梁源, 达新宇, 徐瑞阳, 等. 隐蔽通信中MP-WFRFT系统星座预编码设计[J]. 华中科技大学学报:自然科学版, 2018, 46(2): 72–78. doi: 10.13245/j.hust.180214

    LIANG Yuan, DA Xinyu, XU Ruiyang, et al. Design of constellation precoding in MP-WFRFT based system for covert communications[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2018, 46(2): 72–78. doi: 10.13245/j.hust.180214
    [10] 徐瑞阳, 达新宇, 梁源, 等. 基于跳频的改进加权分数阶傅里叶变换[J]. 华中科技大学学报:自然科学版, 2019, 47(2): 30–35. doi: 10.13245/j.hust.190206

    XU Ruiyang, DA Xinyu, LIANG Yuan, et al. Improved weighted fractional Fourier transform based on frequency hopping[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2019, 47(2): 30–35. doi: 10.13245/j.hust.190206
    [11] LIU Feng, WANG Ling, XIE Jian, et al. MP-WFRFT and chaotic scrambling aided directional modulation technique for physical layer security enhancement[J]. IEEE Access, 2019, 7: 74459–74470. doi: 10.1109/ACCESS.2019.2921109
    [12] WANG Xikang, MENG Qingwei, YANG Jianguang, et al. MPWFRFT secure communication scheme based on chaotic CP insertion[C]. 2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi'an, China, 2021: 1–5.
    [13] 张喆, 达新宇, 刘慧军, 等. 卫星混合载波混沌相位扰码安全传输方案[J]. 西安交通大学学报, 2017, 51(12): 42–48. doi: 10.7652/xjtuxb201712007

    ZHANG Zhe, DA Xinyu, LIU Huijun, et al. A secure transmission scheme for satellite communications based on hybrid carrier and chaotic phase scrambling[J]. Journal of Xi'an Jiaotong University, 2017, 51(12): 42–48. doi: 10.7652/xjtuxb201712007
    [14] 倪磊, 达新宇, 胡航, 等. 基于改进Logistic相位扰码的抗截获通信[J]. 华中科技大学学报:自然科学版, 2019, 47(6): 35–40. doi: 10.13245/j.hust.190607

    NI Lei, DA Xinyu, HU Hang, et al. Research on anti-interception communication based on improved Logistic phase scrambling[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2019, 47(6): 35–40. doi: 10.13245/j.hust.190607
    [15] 达新宇, 翟东, 梁源, 等. 联合多层WFRFT与人工噪声的抗截获通信技术[J]. 华中科技大学学报:自然科学版, 2018, 46(10): 86–91. doi: 10.13245/j.hust.181015

    DA Xinyu, ZHAI Dong, LIANG Yuan, et al. Anti-interception communication technology combining multi-layers WFRFT and artificial noise[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2018, 46(10): 86–91. doi: 10.13245/j.hust.181015
    [16] 翟东, 达新宇, 王浩波, 等. AN辅助的WFRFT抗截获通信优化设计[J]. 弹箭与制导学报, 2018, 38(6): 27–32. doi: 10.15892/j.cnki.djzdxb.2018.06.007

    ZHAI Dong, DA Xinyu, WANG Haobo, et al. Anti-interception communication technology based on WFRFT and artificial noise[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2018, 38(6): 27–32. doi: 10.15892/j.cnki.djzdxb.2018.06.007
    [17] 翟东, 达新宇, 张喆, 等. 多层WFRFT-MIMO卫星通信系统抗截获性能研究[J]. 弹箭与制导学报, 2021, 41(1): 70–75. doi: 10.15892/j.cnki.djzdxb.2021.01.015

    ZHAI Dong, DA Xinyu, ZHANG Zhe, et al. Research on anti-intercept performance of multi-layer WFRFT-MIMO satellite communication system[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2021, 41(1): 70–75. doi: 10.15892/j.cnki.djzdxb.2021.01.015
    [18] DA Xinyu, LIANG Yuan, HU Hang, et al. Embedding WFRFT signals into TDCS for secure communications[J]. IEEE Access, 2018, 6: 54938–54951. doi: 10.1109/ACCESS.2018.2872936
    [19] 倪磊, 达新宇, 王舒, 等. 基于物理层信息加密的卫星隐蔽通信研究[J]. 工程科学与技术, 2018, 50(1): 133–139. doi: 10.15961/j.jsuese.201700160

    NI Lei, DA Xinyu, WANG Shu, et al. Research on satellite covert communication based on the information encryption of physical layer[J]. Advanced Engineering Sciences, 2018, 50(1): 133–139. doi: 10.15961/j.jsuese.201700160
    [20] NIKBAKHT S, ANITESCU C, and RABCZUK T. Optimizing the neural network hyperparameters utilizing genetic algorithm[J]. Journal of Zhejiang University-Science A, 2021, 22(6): 407–426. doi: 10.1631/jzus.A2000384
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  214
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-09-07
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回