高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于联合似然函数的多扩展目标广义标签多伯努利滤波器

刘艺多 姬红兵 张永权

刘艺多, 姬红兵, 张永权. 基于联合似然函数的多扩展目标广义标签多伯努利滤波器[J]. 电子与信息学报, 2023, 45(4): 1303-1312. doi: 10.11999/JEIT220213
引用本文: 刘艺多, 姬红兵, 张永权. 基于联合似然函数的多扩展目标广义标签多伯努利滤波器[J]. 电子与信息学报, 2023, 45(4): 1303-1312. doi: 10.11999/JEIT220213
LIU Yiduo, JI Hongbing, ZHANG Yongquan. A Multiple Extended Target Generalized Labeled Multi-Bernoulli Filter Based on Joint Likelihood Function[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1303-1312. doi: 10.11999/JEIT220213
Citation: LIU Yiduo, JI Hongbing, ZHANG Yongquan. A Multiple Extended Target Generalized Labeled Multi-Bernoulli Filter Based on Joint Likelihood Function[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1303-1312. doi: 10.11999/JEIT220213

基于联合似然函数的多扩展目标广义标签多伯努利滤波器

doi: 10.11999/JEIT220213
基金项目: 国家自然科学基金(61871301),中国博士后科学基金(2020T130494, 2018M633470),中央高校基本科研业务费专项资金(XJS210211)
详细信息
    作者简介:

    刘艺多:女,博士生,研究方向为扩展目标跟踪、信号处理

    姬红兵:男,教授,研究方向为目标跟踪、模式识别

    张永权:男,副教授,研究方向为目标跟踪、信息融合

    通讯作者:

    姬红兵 hbji@xidian.edu.cn

  • 中图分类号: TN953

A Multiple Extended Target Generalized Labeled Multi-Bernoulli Filter Based on Joint Likelihood Function

Funds: The National Natural Science Foundation of China (61871301), China Postdoctoral Science Foundation (2020T130494, 2018M633470), The Fundamental Research Funds for the Central Universities (XJS210211)
  • 摘要: 高分辨率雷达监视系统可观测到区域内不同形状的多个扩展目标,可靠的形状估计有利于提高扩展目标跟踪性能,并可作为战场态势评估的重要依据。该文针对不同形状多扩展目标跟踪问题,提出一种基于联合似然函数的广义标签多伯努利(JL-GLMB)滤波器,可实现目标数目、航迹以及形状的精确估计。首先,将目标形状建模为星凸集,并利用非线性量测变换滤波器更新GLMB分布中的高斯分量,有效提高扩展目标状态估计精度。然后,通过对数加权融合策略,构造联合似然函数,综合衡量扩展目标和量测单元之间的相似程度。最后,基于吉布斯采样,提出快速计算扩展目标状态后验概率密度的方法,有效提高数据关联的准确率和计算效率。仿真实验结果表明,所提滤波器能够有效估计不同形状的多扩展目标状态,且在杂波环境下具有稳定的势估计。
  • 图  1  在两种情况下,运动状态和扩展状态似然值示意图

    图  2  两个近距离扩展目标运动轨迹图

    图  3  基于不同似然函数的JL-GLMB滤波器跟踪性能对比

    图  4  多弹头弹道导弹运动轨迹图

    图  5  GPR-GLMB和JL-GLMB滤波器跟踪性能对比

    图  6  GPR-GLMB和JL-GLMB滤波器目标数目估计曲线

    算法1 吉布斯采样算法
     输入:$ {\gamma ^{(1)}},{T_{\text{G}}},\eta ({\gamma _i}) $
     输出:$ {\gamma ^{(1)}},{\gamma ^{(2)}}, \cdots ,{\gamma ^{({T_{\text{G}}})}} $
     初始化:$ c = [ - 1,0, \cdots ,|{\mathcal{U}}({{\mathbf{Z}}_k})|] $;
     $ \hat \eta = [\eta ( - 1),\eta (0), \cdots ,\eta (|{\mathcal{U}}({{\mathbf{Z}}_k})|)] $;
     for $ t = 2,3, \cdots ,{T_{\text{G}}} $ do
      $ {\gamma ^{(t)}} = [{\text{ }}] $;
      for $m = 1,2, \cdots ,|{{\boldsymbol{\varXi}} _{k - 1} }| + |{ {\mathbf{B} }_k}|$ do
        for $ j = 1,2, \cdots ,|{\mathcal{U}}({{\mathbf{Z}}_k})| $ do
        $ {\hat \eta _m}(j) = {\eta _m}(j) $$(1 - {1_{\{ \gamma _{1:m - 1}^{(t)},\gamma _{m + 1:|{{\boldsymbol{\varXi}} _{k - 1} }| + |{ {\mathbf{B} }_k}|}^{(t - 1)}\} } }(j))$;
       end for
       $ \gamma _m^{(t)} \sim {\text{Categorical}}(c,{\hat \eta _m}) $;
      end for
      ${\gamma ^{(t)} } = [\gamma _1^{(t)},\gamma _2^{(t)}, \cdots ,\gamma _{|{\varXi _{k - 1} }| + |{ {\mathbf{B} }_k}|}^{(t)}]$;
     end for
    下载: 导出CSV

    表  1  不同杂波数目下,GPR-GLMB和JL-GLMB滤波器跟踪性能对比(GPR-GLMB/JL-GLMB)

    杂波数目
    050100150200
    OSPA距离14.096 8/4.335 716.660 1/4.459 519.272 8/4.594 521.759 7/4.701 524.350 1/4.830 6
    位置误差6.965 0/0.012 87.568 7/0.013 28.179 7/0.013 38.756 7/0.014 09.340 3/0.014 6
    形状误差10.807 8/8.154 211.091 9/8.181 511.255 9/8.210 811.435 0/8.278 211.644 1/8.297 5
    势误差1.290 0/0.186 03.365 8/0.327 55.421 5/0.469 07.493 6/0.604 29.553 0/0.842 0
    下载: 导出CSV
  • [1] YU Miao, GONG Liyun, OH H, et al. Multiple model ballistic missile tracking with state-dependent transitions and gaussian particle filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1066–1081. doi: 10.1109/TAES.2017.2773258
    [2] 李文娟, 顾红, 苏卫民. 基于多伯努利概率假设密度的扩展目标跟踪方法[J]. 电子与信息学报, 2016, 38(12): 3114–3121. doi: 10.11999/JEIT160372

    LI Wenjuan, GU Hong, and SU Weimin. Extended target tracking method based on Multi-Bernoulli probability hypothesis density[J]. Jounal of Electronics &Information Technology, 2016, 38(12): 3114–3121. doi: 10.11999/JEIT160372
    [3] YU Le, ZUO Yanchun, LIU Songhua, et al. False scattering center extraction based on template matching method[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(4): 720–724. doi: 10.1109/LAWP.2022.3143868
    [4] 何祥宇, 李静, 杨数强, 等. 基于ET-PHD滤波器和变分贝叶斯近似的扩展目标跟踪算法[J]. 计算机应用, 2020, 40(12): 3701–3706. doi: 10.11772/j.issn.1001-9081.2020040451

    HE Xiangyu, LI Jing, YANG Shuqiang, et al. Extended target tracking algorithm based on ET-PHD filter and variational Bayesian approximation[J]. Journal of Computer Applications, 2020, 40(12): 3701–3706. doi: 10.11772/j.issn.1001-9081.2020040451
    [5] RUUD K A, BREKKE E F, and EIDSVIK J. LIDAR extended object tracking of a maritime vessel using an ellipsoidal contour model[C]. Sensor Data Fusion: Trends, Solutions, Applications, Bonn, Germany, 2018: 1–6.
    [6] ZHANG Xing, YAN Zhibin, CHEN Yunqi, et al. A novel particle filter for extended target tracking with random hypersurface model[J]. Applied Mathematics and Computation, 2022, 425: 127081. doi: 10.1016/j.amc.2022.127081
    [7] AKBARI B and ZHU Haibin. Tracking dependent extended targets using multi-output spatiotemporal Gaussian processes[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18301–18314. doi: 10.1109/TITS.2022.3154926
    [8] KAULBERSCH H, BAUM M, and WILLETT P. EM approach for tracking star-convex extended objects[C]. The 20th International Conference on Information Fusion, Xi'an, China, 2017: 1–7.
    [9] SUN Lifan, LAN Jian, and LI Xiaorong. Extended target tracking using star-convex model with non-linear inequality constraints[C]. The 31st Chinese Control Conference, Hefei, China, 2012: 3869–3874.
    [10] AFTAB W, DE FREITAS A, ARVANEH M, et al. A gaussian process convolution particle filter for multiple extended objects tracking with non-regular shapes[C]. The 21st International Conference on Information Fusion, Cambridge, UK, 2018: 1–8.
    [11] WAHLSTRÖM N and ÖZKAN E. Extended target tracking using gaussian processes[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4165–4178. doi: 10.1109/TSP.2015.2424194
    [12] LIU Yiduo, JI Hongbing, and ZHANG Yongquan. Measurement transformation algorithm for extended target tracking[J]. Signal Processing, 2021, 186: 108129. doi: 10.1016/j.sigpro.2021.108129
    [13] QIN Zheng, KIRUBARAJAN T, and LIANG Yangang. Application of an efficient graph-based partitioning algorithm for extended target tracking using GM-PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4451–4466. doi: 10.1109/TAES.2020.2990803
    [14] GRANSTROM K and ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657–5671. doi: 10.1109/TSP.2012.2212888
    [15] LUNDQUIST C, GRANSTRÖM K, and ORGUNER U. An extended target CPHD filter and a gamma gaussian inverse wishart implementation[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 472–483. doi: 10.1109/JSTSP.2013.2245632
    [16] VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822
    [17] BEARD M, REUTER S, GRANSTRÖM K, et al. A generalised labelled multi-bernoulli filter for extended multi-target tracking[C]. The 18th International Conference on Information Fusion, Washington, USA, 2015: 991–998.
    [18] 陈辉, 李国财, 韩崇昭, 等. 高斯过程回归模型多扩展目标多伯努利滤波器[J]. 控制理论与应用, 2020, 37(9): 1931–1943. doi: 10.7641/CTA.2020.90978

    CHEN Hui, LI Guocai, HAN Chongzhao, et al. A multiple extended target multi-Bernouli filter based on Gaussian process regression model[J]. Control Theory &Applications, 2020, 37(9): 1931–1943. doi: 10.7641/CTA.2020.90978
    [19] SCHEEL A, REUTER S, and DIETMAYER K. Using separable likelihoods for laser-based vehicle tracking with a labeled multi-bernoulli filter[C]. The 19th International Conference on Information Fusion, Heidelberg, Germany, 2016: 1200–1207.
    [20] LI Fu, SHUGUROV I, BUSAM B, et al. PolarMesh: A star-convex 3D shape approximation for object pose estimation[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4416–4423. doi: 10.1109/LRA.2022.3147880
    [21] 陈彦锡, 郭琨毅, 殷红成, 等. 复杂场景散射中心模型化与雷达成像应用[J]. 系统工程与电子技术, 2021, 43(10): 2733–2741. doi: 10.12305/j.issn.1001-506X.2021.10.05

    CHEN Yanxi, GUO Kunyi, YIN Hongcheng, et al. Scattering center modeling and radar imaging application in complex scenes[J]. Systems Engineering and Electronics, 2021, 43(10): 2733–2741. doi: 10.12305/j.issn.1001-506X.2021.10.05
    [22] 王碧垚, 王永齐, 顾鹏. 考虑形状差异的RFS多目标跟踪性能评估方法[J]. 火力与指挥控制, 2021, 46(5): 58–63. doi: 10.3969/j.issn.1002-0640.2021.05.011

    WANG Biyao, WANG Yongqi, and GU Peng. Performance evaluation considering shape difference for multi-target tracking based on random finite set[J]. Fire Control &Command Control, 2021, 46(5): 58–63. doi: 10.3969/j.issn.1002-0640.2021.05.011
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  565
  • HTML全文浏览量:  287
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-07-08
  • 网络出版日期:  2022-07-15
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回