高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱注意力图卷积网络的高光谱图像分类

孔毅 纪定哲 程玉虎 王雪松

孔毅, 纪定哲, 程玉虎, 王雪松. 基于光谱注意力图卷积网络的高光谱图像分类[J]. 电子与信息学报, 2023, 45(4): 1426-1434. doi: 10.11999/JEIT220204
引用本文: 孔毅, 纪定哲, 程玉虎, 王雪松. 基于光谱注意力图卷积网络的高光谱图像分类[J]. 电子与信息学报, 2023, 45(4): 1426-1434. doi: 10.11999/JEIT220204
KONG Yi, JI Dingzhe, CHENG Yuhu, WANG Xuesong. HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1426-1434. doi: 10.11999/JEIT220204
Citation: KONG Yi, JI Dingzhe, CHENG Yuhu, WANG Xuesong. HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1426-1434. doi: 10.11999/JEIT220204

基于光谱注意力图卷积网络的高光谱图像分类

doi: 10.11999/JEIT220204
基金项目: 国家自然科学基金(62006232, 61976215, 62176259),江苏省自然科学基金(BK2020063)
详细信息
    作者简介:

    孔毅:男,副教授,研究方向为机器学习、遥感图像分析

    纪定哲:男,硕士,研究方向为遥感图像分析

    程玉虎:男,教授,研究方向为人工智能、机器学习

    王雪松:女,教授,研究方向为人工智能、机器学习

    通讯作者:

    王雪松 wangxuesongcumt@163.com

  • 中图分类号: TN911.73;TP18

HyperSpectral Image Classification Based on Spectral Attention Graph Convolutional Network

Funds: The National Natural Science Foundation of China (62006232, 61976215, 62176259), The Natural Science Foundation of Jiangsu Province (BK20200632)
  • 摘要: 近年来,图卷积网络因其特征聚合的机制,能够同时对单个节点以及近邻节点的特征进行表示,被广泛应用于高光谱图像的分类任务。然而,高光谱图像(HSI)中常存在波段冗余、同物异谱等问题,使得直接利用原始光谱特征构建的初始图可靠性不足,从而导致高光谱图像的分类精度低。为此,该文提出一种基于光谱注意力图卷积网络(SAGCN)的高光谱图像半监督分类方法。首先,利用注意力模块对光谱的局部与全局信息进行交互,以增加重要光谱的权重、减小冗余波段以及噪声波段的权重,从而实现光谱的自适应加权;然后,针对光谱加权处理后的高光谱图像,通过空间-光谱相似性度量构建更为准确的近邻矩阵;最后,通过图卷积对标记和无标记样本进行有效的特征聚合,并使用标记样本的聚合特征训练网络。在Indian Pines, Kennedy Space Center和Botswana 3个真实高光谱图像数据集上的实验结果验证了所提方法的有效性。
  • 图  1  基于SAGCN的高光谱图像分类

    图  2  不同方法在Indian Pines数据集上的分类效果图

    图  3  每类训练样本量与OA的关系

    图  4  Indian Pines数据集上的特征t-SNE可视化

    图  5  不同kn对OA的影响

    表  1  分类准确率(%)与Kappa系数的对比(Indian Pines数据集)

    SVM[3]1-D CNN[18]2-D CNN[18]GCN[12]SSGCN[13]T-S CNN[7]SSGAN[16]SAGCN-FSFSAGCN
    苜蓿85.7190.4895.2497.50100.00100.00100.00100.00100.00
    非犁耕玉米地53.8156.3151.3945.5785.0882.9794.4481.3395.44
    少犁耕玉米地57.0840.5059.3878.4095.3091.8090.5686.0994.91
    玉米地72.9782.5581.1382.25100.0089.6298.5898.1198.11
    草地/牧地81.1678.3884.2869.8196.0793.8999.5698.6986.68
    草地/树木91.3990.3591.3576.5299.5999.8698.5899.5799.43
    草地/修剪过的牧地96.67100.00100.00100.00100.00100.00100.00100.00100.00
    干草堆85.6786.9890.2988.14100.0096.69100.0098.45100.00
    燕麦97.0080.00100.00100.00100.00100.00100.0090.00100.00
    非犁耕大豆地63.5459.8761.7770.8190.4395.8899.0588.2897.04
    少犁耕大豆地46.8349.5558.7754.0280.2988.6486.1787.0884.86
    清理过的大豆地56.9253.7055.2875.3095.7885.9294.1991.9096.65
    小麦97.7896.6798.8977.8999.02100.00100.00100.00100.00
    树林78.0573.7989.8466.1691.9498.4787.2698.5599.35
    建筑/草地/树木/机器61.4163.1649.8698.9598.7099.7298.3499.1799.17
    石钢塔94.4197.0697.0690.80100.00100.00100.00100.0095.59
    AA76.2874.9679.0379.5195.7695.2196.9794.8396.70
    OA63.8462.5468.0066.5290.3992.0392.7991.0193.89
    Kappa0.59410.58070.63670.62980.88160.90910.91810.89750.9304
    下载: 导出CSV

    表  2  分类准确率(%)与Kappa系数的对比(KSC数据集)

    SVM[3]1-D CNN[18]2-D CNN[18]GCN[12]SSGCN[13]T-S CNN[7]SSGAN[16]SAGCN-FSFSAGCN
    灌木丛79.0272.1594.9491.13100.0099.4697.4298.40100.00
    柳树沼泽67.9281.1986.0184.81100.0098.1896.33100.00100.00
    吊床88.5486.5890.2994.40100.0094.85100.00100.00100.00
    湿地松19.2855.9577.7257.3250.4389.9693.39100.00100.00
    橡树74.0549.2681.9874.1982.98100.0094.8581.76100.00
    硬木80.0962.2573.7447.0998.5697.5797.0696.76100.00
    沼泽59.8090.00100.0097.50100.00100.0095.00100.00100.00
    禾本科57.7182.2788.4594.82100.0099.5198.2899.52100.00
    米草沼泽92.2690.9198.7273.5499.2098.79100.0098.62100.00
    香蒲沼泽73.8284.7076.2768.59100.0099.7499.74100.00100.00
    盐沼89.9095.9499.1997.8294.7493.1899.75100.00100.00
    泥滩88.4079.2965.1288.7396.4897.5097.4995.3197.07
    98.1697.8989.0597.94100.00100.0099.00100.00100.00
    AA74.5379.1186.2782.1494.0097.6097.5697.7299.77
    OA79.9782.8187.1585.3996.2898.0598.1898.4599.71
    Kappa0.77770.80890.85640.83750.95850.97820.97970.98280.9968
    下载: 导出CSV

    表  3  分类准确率(%)与Kappa系数的对比(Botswana数据集)

    SVM[3]1-D CNN[18]2-D CNN[18]GCN[12]SSGCN[13]T-S CNN[7]SSGAN[16]SAGCN-FSFSAGCN
    89.84100.00100.0092.65100.0099.1899.59100.00100.00
    河马草87.8975.0073.2694.74100.0096.0598.68100.00100.00
    漫滩草182.3593.0974.1588.94100.0099.56100.00100.00100.00
    漫滩草286.6381.4388.588.9599.47100.0098.95100.00100.00
    芦苇70.5768.9453.5468.8597.1399.59100.00100.00100.00
    河岸59.1056.8292.9163.9378.6997.5494.26100.0096.72
    火疤82.4486.6195.9095.30100.0099.1592.74100.00100.00
    岛屿内部80.2882.3286.7080.9099.44100.00100.00100.00100.00
    相思林地69.1074.4351.8463.6798.9687.8998.2799.31100.00
    相思灌木丛69.3365.8495.2872.2099.55100.0095.5298.21100.00
    相思草原73.5079.0099.3178.9393.5799.6498.5788.9397.5
    矮可乐豆71.9997.7393.3777.5699.36100.0098.72100.00100.00
    混合可乐豆72.0677.1993.6865.0298.7799.1899.5999.59100.00
    暴露的土壤99.5798.89100.0085.7198.5798.57100.0084.29100.00
    AA78.1981.2485.6079.8197.3998.3198.2197.8899.59
    OA76.1680.0284.7978.1696.9698.1498.0398.3199.48
    Kappa0.74270.78350.83510.76320.96710.97980.97870.98280.9944
    下载: 导出CSV
  • [1] BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2): 6–36. doi: 10.1109/MGRS.2013.2244672
    [2] LANDGREBE D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1): 17–28. doi: 10.1109/79.974718
    [3] BAZI Y and MELGANI F. Toward an optimal SVM classification system for hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3374–3385. doi: 10.1109/TGRS.2006.880628
    [4] FANG Leyuan, LI Shutao, KANG Xudong, et al. Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7738–7749. doi: 10.1109/TGRS.2014.2318058
    [5] 戴晓爱, 郭守恒, 任淯, 等. 基于堆栈式稀疏自编码器的高光谱影像分类[J]. 电子科技大学学报, 2016, 45(3): 382–386. doi: 10.3969/j.issn.1001-0548.2016.02.012

    DAI Xiaoai, GUO Shouheng, REN Yu, et al. Hyperspectral remote sensing image classification using the stacked sparse autoencoder[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(3): 382–386. doi: 10.3969/j.issn.1001-0548.2016.02.012
    [6] CHEN Yushi, ZHAO Xing, and JIA Xiuping. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2381–2392. doi: 10.1109/JSTARS.2015.2388577
    [7] LI Xian, DING Mingli, and PIŽURICA A. Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2615–2629. doi: 10.1109/TGRS.2019.2952758
    [8] CHEN Yushi, LIN Zhouhan, ZHAO Xing, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094–2107. doi: 10.1109/JSTARS.2014.2329330
    [9] 倪鼎, 马洪兵. 基于近邻协同的高光谱图像谱-空联合分类[J]. 自动化学报, 2015, 41(2): 273–284. doi: 10.16383/j.aas.2015.c140043

    NI Ding and MA Hongbing. Spectral-spatial classification of hyperspectral images based on neighborhood collaboration[J]. ACTA Automatica Sinica, 2015, 41(2): 273–284. doi: 10.16383/j.aas.2015.c140043
    [10] LI Wei, WU Guodong, ZHANG Fan, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 844–853. doi: 10.1109/TGRS.2016.2616355
    [11] LI Zhaokui, WANG Tianning, LI Wei, et al. Deep multilayer fusion dense network for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1258–1270. doi: 10.1109/JSTARS.2020.2982614
    [12] KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017: 1–14.
    [13] QIN Anyong, SHANG Zhaowei, TIAN Jinyu, et al. Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 241–245. doi: 10.1109/LGRS.2018.2869563
    [14] DING Yun, GUO Yuanyuan, CHONG Yanwen, et al. Global consistent graph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5501516. doi: 10.1109/TIM.2021.3056750
    [15] WANG Haoyu, CHENG Yuhu, CHEN C L P, et al. Semisupervised classification of hyperspectral image based on graph convolutional broad network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2995–3005. doi: 10.1109/JSTARS.2021.3062642
    [16] SHA Anshu, WANG Bin, WU Xiaofeng, et al. Semisupervised classification for hyperspectral images using graph attention networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 157–161. doi: 10.1109/LGRS.2020.2966239
    [17] SUN Weiwei, YANG Gang, PENG Jiangtao, et al. A multiscale spectral features graph fusion method for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5513712. doi: 10.1109/TGRS.2021.3102246
    [18] CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232–6251. doi: 10.1109/TGRS.2016.2584107
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  577
  • HTML全文浏览量:  1025
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-07-31
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-04-10

目录

    /

    返回文章
    返回