[1] |
GOKCEOGLU A, GHADAM A, and VALKAMA M. Steady-state performance analysis and step-size selection for LMS-adaptive wideband feedforward power amplifier linearizer[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 82–99. doi: 10.1109/TSP.2011.2169254
|
[2] |
ALONGE F, D’IPPOLITO F, and CANGEMI T. Identification and robust control of DC/DC converter Hammerstein model[J]. IEEE Transactions on Power Electronics, 2008, 23(6): 2990–3003. doi: 10.1109/TPEL.2008.2005034
|
[3] |
SHI Kun, ZHOU G T, and VIBERG M. Compensation for nonlinearity in a Hammerstein system using the coherence function with application to nonlinear acoustic echo cancellation[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5853–5858. doi: 10.1109/TSP.2007.901657
|
[4] |
赵益波, 严涛, 李春彪, 等. α-稳定分布噪声环境下的非线性回声消除研究[J]. 电子学报, 2020, 48(1): 59–65. doi: 10.3969/j.issn.0372-2112.2020.01.007ZHAO Yibo, YAN Tao, LI Chunbiao, et al. Research on nonlinear echo cancellation in the α-stable noise environment[J]. Acta Electronica Sinica, 2020, 48(1): 59–65. doi: 10.3969/j.issn.0372-2112.2020.01.007
|
[5] |
KOMATSU K, MIYAJI Y, and UEHARA H. Basis function selection of frequency-domain Hammerstein self-interference canceller for in-band full-duplex wireless communications[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3768–3780. doi: 10.1109/TWC.2018.2816061
|
[6] |
赵海全, 李磊. 一种抗冲击噪声的对数总体最小二乘自适应滤波算法[J]. 电子与信息学报, 2021, 43(2): 284–288. doi: 10.11999/JEIT200344ZHAO Haiquan and LI Lei. A Logarithmic Total least squares adaptive filtering algorithm for impulsive noise suppression[J]. Journal of Electronics &Information Technology, 2021, 43(2): 284–288. doi: 10.11999/JEIT200344
|
[7] |
MA Junxia, HUANG Biao, and DING Feng. Iterative identification of Hammerstein parameter varying systems with parameter uncertainties based on the variational Bayesian approach[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(3): 1035–1045. doi: 10.1109/TSMC.2017.2756913
|
[8] |
WANG Dongqing, ZHANG Shuo, GAN Min, et al. A novel EM identification method for Hammerstein systems with missing output data[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2500–2508. doi: 10.1109/TII.2019.2931792
|
[9] |
HONG Xia, CHEN Sheng, HARRIS C J, et al. Single-carrier frequency domain equalization for Hammerstein communication systems using complex-valued neural networks[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4467–4478. doi: 10.1109/TSP.2014.2333555
|
[10] |
GREBLICKI W and PAWLAK M. The weighted nearest neighbor estimate for hammerstein system identification[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1550–1565. doi: 10.1109/TAC.2018.2866463
|
[11] |
GÓMEZ J C and BAEYENS E. Subspace-based identification algorithms for Hammerstein and wiener models[J]. European Journal of Control, 2005, 11(2): 127–136. doi: 10.3166/EJC.11.127-136
|
[12] |
LIU Ying and LI Chunguang. Distributed prediction via adaptive Hammerstein filter over networked systems[J]. IEEE Transactions on Signal and Information Processing over Networks, 2018, 4(3): 534–548. doi: 10.1109/TSIPN.2017.2780620
|
[13] |
JERAJ J and MATHEWS V J. Stochastic mean-square performance analysis of an adaptive Hammerstein filter[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2168–2177. doi: 10.1109/TSP.2006.873587
|
[14] |
方维维, 刘梦然, 王云鹏, 等. 面向物联网隐私数据分析的分布式弹性网络回归学习算法[J]. 电子与信息学报, 2020, 42(10): 2403–2411. doi: 10.11999/JEIT190739FANG Weiwei, LIU Mengran, WANG Yunpeng, et al. A Distributed elastic net regression algorithm for private data analytics in internet of things[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2403–2411. doi: 10.11999/JEIT190739
|
[15] |
LE Fengmin, MARKOVSKY I, FREEMAN C T, et al. Recursive identification of Hammerstein systems with application to electrically stimulated muscle[J]. Control Engineering Practice, 2012, 20(4): 386–396. doi: 10.1016/j.conengprac.2011.08.001
|
[16] |
DONG Shijian, LI Yu, ZHANG Wenan, et al. Robust extended recursive least squares identification algorithm for Hammerstein systems with dynamic disturbances[J]. Digital Signal Processing, 2020, 101: 102716. doi: 10.1016/j.dsp.2020.102716
|
[17] |
LEE K, BAEK Y, and PARK Y. Nonlinear acoustic echo cancellation using a nonlinear postprocessor with a linearly constrained affine projection algorithm[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2015, 62(9): 881–885. doi: 10.1109/TCSII.2015.2435711
|