高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可见光与射频聚合系统稳健波束成形设计

马帅 秦莉莉 李兵 杨瑞鑫 李航 李宗艳 王悦 李世银

马帅, 秦莉莉, 李兵, 杨瑞鑫, 李航, 李宗艳, 王悦, 李世银. 可见光与射频聚合系统稳健波束成形设计[J]. 电子与信息学报, 2022, 44(8): 2659-2665. doi: 10.11999/JEIT220142
引用本文: 马帅, 秦莉莉, 李兵, 杨瑞鑫, 李航, 李宗艳, 王悦, 李世银. 可见光与射频聚合系统稳健波束成形设计[J]. 电子与信息学报, 2022, 44(8): 2659-2665. doi: 10.11999/JEIT220142
MA Shuai, QIN Lili, LI Bing, YANG Ruixin, LI Hang, LI Zongyan, WANG Yue, LI Shiyin. Robust Beamforming Design for Aggregated Visible Light Communication and Radio Frequency Systems[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2659-2665. doi: 10.11999/JEIT220142
Citation: MA Shuai, QIN Lili, LI Bing, YANG Ruixin, LI Hang, LI Zongyan, WANG Yue, LI Shiyin. Robust Beamforming Design for Aggregated Visible Light Communication and Radio Frequency Systems[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2659-2665. doi: 10.11999/JEIT220142

可见光与射频聚合系统稳健波束成形设计

doi: 10.11999/JEIT220142
基金项目: 中国矿业大学研究生创​新计划项目资助(2022WLJCRCZL108),中央高校基本科研业务费专项资金(2022QN1052)
详细信息
    作者简介:

    马帅:男,1986年生,副教授,研究方向为无线通信、可见光通信、低频透地通信等

    秦莉莉:女,1996年生,硕士生,研究方向为可见光通信

    李兵:男,1997年生,硕士生,研究方向为可见光通信、定位技术

    杨瑞鑫:男,1992年生,博士生,研究方向为可见光通信、无线通信、网络信息理论

    李航:男,1985年生,深圳大数据研究院研究员,研究方向为可见光通信、定位技术、无线通信

    李宗艳:女,1982年生,讲师,研究方向为无线通信、光通信的编码调制技术

    王悦:女,1994年生,副教授,研究方向为微波光子技术的光电振荡器、亚波长光栅波导、微波光子变频器、集成光子器件等

    李世银:男,1971年生,教授,研究方向为煤矿信息化、移动目标定位等

    通讯作者:

    马帅 mashuai001@cumt.edu.cn

  • 中图分类号: TN929.1

Robust Beamforming Design for Aggregated Visible Light Communication and Radio Frequency Systems

Funds: The Graduate Innovation Program of China University of Mining and Technology (2022WLJCRCZL108), The Fundamental Research Funds for the Central Universities (2022QN1052)
  • 摘要: 该文首次研究了可见光通信(VLC)与射频(RF) 聚合系统稳健波束成形设计。具体来说,在VLC和RF信道状态信息(CSIs)都不完美的情况下,该文提出了稳健波束成形设计方案,研究了同时满足最小速率要求和调光控制约束的总传输功率最小化问题。然而,稳健波束成形设计问题存在无限多的约束,这是难以处理的。通过半正定松弛(SDR),首先对非凸原问题进行松弛,然后利用$\mathcal{S}$引理将其重新表述为凸半正定规划(SDP),用内点方法可以有效地求解。最后,数值仿真结果验证了所提稳健VLC-RF聚合系统的鲁棒性和有效性。
  • 图  1  VLC-RF聚合系统原理图

    图  2  速率的累积分布函数

    图  3  传输功率、稳健方案速率${R_{{\text{VLC}}}}$${R_{{\text{RF}}}}$随着速率阈值$ \bar R $的变化

    图  4  传输功率、稳健方案的速率${R_{{\text{VLC}}}}$${R_{{\text{RF}}}}$随着VLC链路的CSI误差方差的变化

    图  5  传输功率、稳健方案的速率${R_{{\text{VLC}}}}$${R_{{\text{RF}}}}$随着RF链路的CSI误差方差的变化

    图  6  传输功率、稳健方案的速率${R_{{\text{VLC}}}}$${R_{{\text{RF}}}}$随着最大光功率$P_{\text{o}}^{\max }$的变化

    图  7  传输功率、稳健方案的速率${R_{{\text{VLC}}}}$${R_{{\text{RF}}}}$随着LED数量$N$的变化

    图  8  传输功率、稳健方案的速率${R_{{\text{VLC}}}}$${R_{{\text{RF}}}}$随着RF发射天线数量$M$的变化

    表  1  仿真参数表

    VLC链路RF链路
    仿真参数及符号参数值仿真参数及符号参数值
    噪声功率谱密度$\sigma _{\text{v}}^2$${10^{ - 21}}{\text{ }}{{\text{A}}^{\text{2}}}{\text{/Hz}}$噪声功率谱密度$\sigma _{\text{r}}^{\text{2}}$$ - 57{\text{ dBm/Hz}}$
    PD的有效探测面积${A_{\text{v}}}$$1{\text{ c}}{{\text{m}}^2}$功率放大器效率${\mu _{\text{r}}}$0.45
    PD的视场角$\varPsi$90°RF链路距离${d_{{\text{v}},k}}$$3{\text{ m}}$
    LED的半功率角${\theta _{1/2}}$60°接收角${\psi _k}$45°
    LED允许的最大电流${I_{\text{H}}}$$10{\text{ A}}$中心载波频率$f$$2.4{\text{ GHz}}$
    带宽$ {B_{\text{v}}} $$20{\text{ MHz}}$带宽$ {B_{\text{r}}} $$10{\text{ MHz}}$
    下载: 导出CSV
  • [1] TRAN G N and KIM S. Performance analysis of short packets in NOMA VLC systems[J]. IEEE Access, 2022, 10: 6505–6517. doi: 10.1109/ACCESS.2022.3141865
    [2] Qualcomm. An internet of everything that works for everyone[EB/OL]. https://www.qualcomm.com/news/onq/2015/05/13/internet-everything-works-everyone, 2015.
    [3] Cisco: A platform for business innovation and revenue generation[EB/OL]. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/serviceprovider-wi-fi/solutionoverviewc22-642482.2020.9.
    [4] ZHAO Yiheng and CHI Nan. Partial pruning strategy for a dual-branch multilayer perceptron-based post-equalizer in underwater visible light communication systems[J]. Optics Express, 2020, 28(10): 15562–15572. doi: 10.1364/OE.393443
    [5] WANG Li, WANG Xuanzheng, KANG Jian, et al. A 75-Mb/s RGB PAM-4 visible light communication transceiver system with pre- and post-equalization[J]. Journal of Lightwave Technology, 2021, 39(5): 1381–1390. doi: 10.1109/JLT.2020.3034227
    [6] JOVICIC A, LI Junyi, and RICHARDSON T. Visible light communication: Opportunities, challenges and the path to market[J]. IEEE Communications Magazine, 2013, 51(12): 26–32. doi: 10.1109/MCOM.2013.6685754
    [7] YANG Helin, ZHONG Wende, CHEN Chen, et al. Integration of visible light communication and positioning within 5G networks for internet of things[J]. IEEE Network, 2020, 34(5): 134–140. doi: 10.1109/MNET.011.1900567
    [8] MA Shuai, ZHANG Fan, LI Hang, et al. Aggregated VLC-RF systems: Achievable rates, optimal power allocation, and energy efficiency[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7265–7278. doi: 10.1109/TWC.2020.3010294
    [9] TANG Aimin, XU Chao, ZHAI Bangzhao, et al. Design and implementation of an integrated visible light communication and WiFi system[C]. The IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Chengdu, China, 2018: 157–165.
    [10] ISMAIL T, GAD M E, and MOKHTAR B. Integrated VLC/RF wireless technologies for reliable content caching system in vehicular networks[J]. IEEE Access, 2021, 9: 51855–51864. doi: 10.1109/ACCESS.2021.3070397
    [11] YANG Liwei, ZHANG Wenjie, ZHANG Yan, et al. Hybrid optical wireless network based on visible light communications (VLC)-WiFi heterogeneous interconnection[C]. The 2nd International Conference on Communication Engineering and Technology (ICCET), Nagoya, Japan, 2019: 35–38.
    [12] KAHN J M and BARRY J R. Wireless infrared communications[J]. Proceedings of the IEEE, 1997, 85(2): 265–298. doi: 10.1109/5.554222
    [13] PALOMAR D P and JIANG Y. MIMO transceiver design via majorization theory[J]. Foundations and Trends in Communications and Information Theory, 2006, 3(4/5): 331–551.
    [14] 马帅. 存在信道误差的无线通信系统的稳健信号处理方法[D]. [博士论文], 西安电子科技大学, 2016.

    MA Shuai. Robust signal processing for wireless communication systems with erroneous channel state information[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2016.
    [15] MARSHOUD H, DAWOUD D, KAPINAS V M, et al. MU-MIMO precoding for VLC with imperfect CSI[C]. The 4th International Workshop on Optical Wireless Communications (IWOW), Istanbul, Turkey, 2015: 93–97.
    [16] 贺阳. 可见光通信网络的信道容量和非正交多址接入研究[D]. [硕士论文], 中国矿业大学, 2020.

    HE Yang. Research on channel capacity and non-orthogonal multiple access in visible communication networks[D]. [Master dissertation], China University of Mining and Technology, 2020.
    [17] MA Shuai, YANG Ruixin, LI Hang, et al. Achievable rate with closed-form for SISO channel and broadcast channel in visible light communication networks[J]. Journal of Lightwave Technology, 2017, 35(14): 2778–2787. doi: 10.1109/JLT.2017.2704619
    [18] YAO Sike and ZHANG Xiaoyu. Joint beamforming and DC bias optimization in VLC with dimming control[C]. The IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–5.
    [19] GRUSSLER C, RANTZER A, and GISELSSON P. Low-rank optimization with convex constraints[J]. IEEE Transactions on Automatic Control, 2018, 63(11): 4000–4007. doi: 10.1109/TAC.2018.2813009
    [20] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  295
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-04-06
  • 网络出版日期:  2022-04-21
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回