高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积长短时记忆深度神经网络的带内全双工非线性数字自干扰消除

路雷 褚建军 唐燕群 陶业荣 伍哲舜 郑承武 陈琦

路雷, 褚建军, 唐燕群, 陶业荣, 伍哲舜, 郑承武, 陈琦. 基于卷积长短时记忆深度神经网络的带内全双工非线性数字自干扰消除[J]. 电子与信息学报, 2022, 44(11): 3874-3881. doi: 10.11999/JEIT220110
引用本文: 路雷, 褚建军, 唐燕群, 陶业荣, 伍哲舜, 郑承武, 陈琦. 基于卷积长短时记忆深度神经网络的带内全双工非线性数字自干扰消除[J]. 电子与信息学报, 2022, 44(11): 3874-3881. doi: 10.11999/JEIT220110
LU Lei, CHU Jianjun, TANG Yanqun, TAO Yerong, WU Zheshun, ZHENG Chengwu, CHEN Qi. Driven Non-linear Digital Self Interference Cancellation for In-Band Full Duplex Systems Based on Convolution Long Short-term Memory Deep Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3874-3881. doi: 10.11999/JEIT220110
Citation: LU Lei, CHU Jianjun, TANG Yanqun, TAO Yerong, WU Zheshun, ZHENG Chengwu, CHEN Qi. Driven Non-linear Digital Self Interference Cancellation for In-Band Full Duplex Systems Based on Convolution Long Short-term Memory Deep Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3874-3881. doi: 10.11999/JEIT220110

基于卷积长短时记忆深度神经网络的带内全双工非线性数字自干扰消除

doi: 10.11999/JEIT220110
基金项目: 广东省基础与应用基础研究基金(2019A1515011622),西南科技大学自然科学基金(21zx7126)
详细信息
    作者简介:

    路雷:男,高级工程师,研究方向为通信对抗技术、电磁兼容与电磁环境效应

    褚建军:男,硕士生,研究方向为认知通信、全双工通信

    唐燕群:男,副教授,研究方向为认知通信、全双工通信

    陶业荣:男,高级工程师,研究方向为认知通信、全双工通信

    伍哲舜:男,硕士生,研究方向为认知通信、全双工通信

    郑承武:男,硕士生,研究方向为微波技术与天线

    陈琦:男,教授,研究方向为天线理论与设计、电磁兼容与电磁环境效应、太赫兹技术等

    通讯作者:

    唐燕群 tangyq8@mail.sysu.edu.cn

  • 中图分类号: TP183; TN975

Driven Non-linear Digital Self Interference Cancellation for In-Band Full Duplex Systems Based on Convolution Long Short-term Memory Deep Neural Network

Funds: Guangdong Province Natural Science Foundation (2019A1515011622), The Natural Science Fonundation of Southwest University of Science and Technology (21zx7126)
  • 摘要: 带内全双工(IBFD)技术能够有效提高无线通信系统的频谱效率,近年来引起了广泛关注。然而,同时发送和接收引起的线性和非线性自干扰给IBFD带来了巨大挑战。传统的非线性自干扰消除主要是基于多项式模型和深度神经网络(DNN)来实现。多项式模型方法存在模型失配导致自干扰效果恶化的风险,而DNN方法无法针对高维数据特有的空频相关性、时间相关性等特点进行处理。该文基于卷积长短时记忆深度神经网络(CLDNN),通过在输入层中引入3维张量以及在卷积层设置复数卷积层结构,分别设计了两种重建自干扰信号的网络结构——2维CLDNN(2D-CLDNN)和复值CLDNN(CV-CLDNN),充分利用卷积神经网络局部感知和权值共享的优势,在高维特征中学习到更抽象的低维特征,从而提高自干扰消除的效果。实际场景中获得数据的评估结果显示,当功率放大器记忆长度M和自干扰信道多径长度L满足M+L=13时,通过总共60次训练轮数,该文提出的结构比传统DNN方法在非线性自干扰消除方面可以实现至少26%的改进,训练轮数也有明显减少。
  • 图  1  所提出的基带等效信号模型的框图

    图  2  2D-CLDNN结构

    图  3  CV-CLDNN结构

    图  4  M+L=13时,非线性自干扰消除性能(dB)与训练轮数的关系

    图  5  自干扰信号与进行线性/非线性抵消后的功率谱密度

    图  6  M+L=8时,非线性自干扰消除性能(dB)与训练轮数的关系

    图  7  M+L=20时,非线性自干扰消除性能(dB)与训练轮数的关系

    表  1  各方法在M+L不同条件下的非线性自干扰消除性能(dB)

    方法M+L =8M+L =13M+L =20
    2D-CLDNN6.637.717.65
    CV-CLDNN6.677.897.59
    Polynomial6.146.946.89
    RVNN5.946.256.61
    CVNN-splitReLU6.157.086.77
    下载: 导出CSV
  • [1] 李彤, 沈莹, 潘文生, 等. 时间异步全双工数字域分段卷积自干扰抑制技术[J]. 电子与信息学报, 2022, 44(4): 1395–1401. doi: 10.11999/JEIT210024

    LI Tong, SHEN Ying, PAN Wensheng, et al. A timing asynchronous full duplex digital self-interference suppression method by segment convolution[J]. Journal of Electronics &Information Technology, 2022, 44(4): 1395–1401. doi: 10.11999/JEIT210024
    [2] 唐友喜. 同时同频全双工原理与应用[M]. 北京: 科学出版社, 2016.

    TANG Youxi. No Division Duplex: Full Duplex Principles and Applications[M]. Beijing: Science Press, 2016.
    [3] SABHARWAL A, SCHNITER P, GUO Dongning, et al. In-band full-duplex wireless: Challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1637–1652. doi: 10.1109/JSAC.2014.2330193
    [4] BALATSOUKAS-STIMMING A, AUSTIN A C M, BELANOVIC P, et al. Baseband and RF hardware impairments in full-duplex wireless systems: Experimental characterisation and suppression[J]. EURASIP Journal on Wireless Communications and Networking, 2015, 2015: 142. doi: 10.1186/s13638-015-0350-1
    [5] ISAKSSON M, WISELL D, and RONNOW D. A comparative analysis of behavioral models for RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(1): 348–359. doi: 10.1109/TMTT.2005.860500
    [6] BALATSOUKAS-STIMMING A. Non-linear digital self-interference cancellation for in-band full-duplex radios using neural networks[C]. 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 2018: 1–5.
    [7] KORPI D, ANTTILA L, and VALKAMA M. Nonlinear self-interference cancellation in MIMO full-duplex transceivers under crosstalk[J]. EURASIP Journal on Wireless Communications and Networking, 2017, 2017(1): 24. doi: 10.1186/s13638-017-0808-4
    [8] KRISTENSEN A T, BURG A, and BALATSOUKAS-STIMMING A. Advanced machine learning techniques for self-interference cancellation in full-duplex radios[C]. 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2019: 1149–1153.
    [9] WANG Qing, HE Fangmin, and MENG Jin. Performance comparison of real and complex valued neural networks for digital self-interference cancellation[C]. 2019 IEEE 19th International Conference on Communication Technology, Xi'an, China, 2019: 1193–1199.
    [10] LIU Xiaoyu, YANG Diyu, and EL GAMAL A. Deep neural network architectures for modulation classification[C]. 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 915–919.
    [11] HUANG Jicun, RUAN S, HSU W C, et al. 3D-CLDNN: An effective architecture on deep neural network for sEMG-based lower limb abnormal recognition[C]. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 2019: 906–907.
    [12] SAINATH T N, VINYALS O, SENIOR A, et al. Convolutional, long short-term memory, fully connected deep neural networks[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 2015: 4580–4584.
    [13] EMAM A, SHALABY M, ABOELAZM M A, et al. A comparative study between CNN, LSTM, and CLDNN models in the context of radio modulation classification[C]. 2020 12th International Conference on Electrical Engineering (ICEENG), Cairo, Egypt, 2020: 190–195.
    [14] WANG Tianqi, WEN Chaokai, JIN Shi, et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels[J]. IEEE Wireless Communications Letters, 2019, 8(2): 416–419. doi: 10.1109/LWC.2018.2874264
    [15] GUO Jiajia, WEN Chaokai, JIN Shi, et al. Convolutional neural network-based multiple-Rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis[J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2827–2840. doi: 10.1109/TWC.2020.2968430
    [16] HIROSE A and YOSHIDA S. Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(4): 541–551. doi: 10.1109/TNNLS.2012.2183613
    [17] TRABELSI C, BILANIUK O, ZHANG Ying, et al. Deep complex networks[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  765
  • HTML全文浏览量:  334
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回