[1] |
CUI Tiejun, LIU Suo, and ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. doi: 10.1039/C7TC00548B
|
[2] |
BAO Lei, WU Ruiyuan, FU Xiaojian, et al. Multi-beam forming and controls by metasurface with phase and amplitude modulations[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6680–6685. doi: 10.1109/TAP.2019.2925289
|
[3] |
MA Qian, SHI Chuanbo, BAI Guodong, et al. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit[J]. Advanced Optical Materials, 2017, 5(23): 1700548. doi: 10.1002/adom.201700548
|
[4] |
GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi: 10.1109/TAP.2018.2866636
|
[5] |
ZHANG Lei, LIU Shuo, LI Lianlin, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36447–36455. doi: 10.1021/acsami.7b12468
|
[6] |
YANG Jin, ZHANG Cheng, MA Huifeng, et al. Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums[J]. Optics Express, 2018, 26(24): 31664–31674. doi: 10.1364/OE.26.031664
|
[7] |
WANG Zhuochao, HU Guangwei, WANG Xinwei, et al. Single-layer spatial analog meta-processor for imaging processing[J]. Nature Communications, 2022, 13(1): 2188. doi: 10.1038/s41467-022-29732-4
|
[8] |
刘涛, 曹祥玉, 高军, 等. 宽带低RCS超表面天线阵设计[J]. 电子与信息学报, 2019, 41(9): 2095–2102. doi: 10.11999/JEIT180922LIU Tao, CAO Xiangyu, GAO Jun, et al. Design of wideband matasurface antenna array with low scattering characteristics[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2095–2102. doi: 10.11999/JEIT180922
|
[9] |
吉地辽日, 曹祥玉, 高军. 具有超宽带RCS减缩特性的天线设计[J]. 电子与信息学报, 2019, 41(1): 115–122. doi: 10.11999/JEIT180254JIDI Liaori, CAO Xiangyu, and GAO Jun. Metasurface antenna design with ultra-wideband RCS reduction[J]. Journal of Electronics &Information Technology, 2019, 41(1): 115–122. doi: 10.11999/JEIT180254
|
[10] |
CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active Huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422
|
[11] |
HUANG Cheng, ZHANG Changlei, YANG Jianing, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485
|
[12] |
CAI Tong, WANG Guangming, XU Hexiu, et al. Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections[J]. Annalen Der Physik, 2018, 530(1): 1700321. doi: 10.1002/andp.201700321
|
[13] |
ZHUANG Yaqiang, WANG Guangming, CAI Tong, et al. Design of bifunctional metasurface based on independent control of transmission and reflection[J]. Optics Express, 2018, 26(3): 3594–3603. doi: 10.1364/OE.26.003594
|
[14] |
YANG Jianing, WU Xiaoyu, SONG Jiakun, et al. Cascaded metasurface for simultaneous control of transmission and reflection[J]. Optics Express, 2019, 27(6): 9061–9070. doi: 10.1364/OE.27.009061
|
[15] |
SHANG Guanyu, LI Haoyu, WANG Zhuochao, et al. Coding metasurface holography with polarization-multiplexed functionality[J]. Journal of Applied Physics, 2021, 129(3): 035304. doi: 10.1063/5.0036027
|
[16] |
PFEIFFER C and GRBIC A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401. doi: 10.1103/PhysRevLett.110.197401
|
[17] |
SELVANAYAGAM M and ELEFTHERIADES G V. Circuit modeling of Huygens surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1642–1645. doi: 10.1109/LAWP.2013.2293631
|
[18] |
XUE Chunhua, LOU Qun, and CHEN Zhining. Broadband double-layered Huygens’ metasurface lens antenna for 5G millimeter-wave systems[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1468–1476. doi: 10.1109/TAP.2019.2943440
|
[19] |
XUE Chunhua, LOU Qun, and LI Teng. Ultra-compact, broadband Huygens’ metasurfaces based on induced magnetism[J]. Applied Physics Express, 2019, 12(7): 072005. doi: 10.7567/1882-0786/ab266c
|
[20] |
CHONG K E, WANG Lei, STAUDE I, et al. Efficient polarization-insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms[J]. ACS Photonics, 2016, 3(4): 514–519. doi: 10.1021/acsphotonics.5b00678
|
[21] |
WANG Zhuochao, DING Xumin, ZHANG Kuang, et al. Huygens metasurface holograms with the modulation of focal energy distribution[J]. Advanced Optical Materials, 2018, 6(12): 1800121. doi: 10.1002/adom.201800121
|
[22] |
WANG Zhuochao, LIU Jian, DING Xumin, et al. Three-dimensional microwave holography based on broadband Huygens’ metasurface[J]. Physical Review Applied, 2020, 13(1): 014033. doi: 10.1103/PhysRevApplied.13.014033
|
[23] |
SONG Lizhao, QIN Peiyuan, and GUO Y J. A high-efficiency conformal transmitarray antenna employing dual-layer ultrathin Huygens element[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 848–858. doi: 10.1109/TAP.2020.3016157
|
[24] |
GUAN Chunsheng, WANG Zhuochao, DING Xumin, et al. Coding Huygens’ metasurface for enhanced quality holographic imaging[J]. Optics Express, 2019, 27(5): 7108–7119. doi: 10.1364/OE.27.007108
|
[25] |
WU Junwei, WANG Zhengxing, ZHANG Lei, et al. Anisotropic metasurface holography in 3-D space with high resolution and efficiency[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 302–316. doi: 10.1109/TAP.2020.3008659
|
[26] |
WANG Zhuochao, DING Xumin, LIU Shengying, et al. Polarization-multiplexed Huygens metasurface holography[J]. Optics Letters, 2020, 45(19): 5488–5491. doi: 10.1364/OL.403060
|