高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超表面的宽带超低剖面折叠透射阵

钟显江 许河秀 侯建强 陈蕾 肖秦琨

钟显江, 许河秀, 侯建强, 陈蕾, 肖秦琨. 基于超表面的宽带超低剖面折叠透射阵[J]. 电子与信息学报, 2022, 44(12): 4095-4103. doi: 10.11999/JEIT220007
引用本文: 钟显江, 许河秀, 侯建强, 陈蕾, 肖秦琨. 基于超表面的宽带超低剖面折叠透射阵[J]. 电子与信息学报, 2022, 44(12): 4095-4103. doi: 10.11999/JEIT220007
ZHONG Xianjiang, XU Hexiu, HOU Jianqiang, CHEN Lei, XIAO Qinkun. Wideband Ultralow-profile Folded Transmitarray Based on Metasurface[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4095-4103. doi: 10.11999/JEIT220007
Citation: ZHONG Xianjiang, XU Hexiu, HOU Jianqiang, CHEN Lei, XIAO Qinkun. Wideband Ultralow-profile Folded Transmitarray Based on Metasurface[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4095-4103. doi: 10.11999/JEIT220007

基于超表面的宽带超低剖面折叠透射阵

doi: 10.11999/JEIT220007
基金项目: 国家自然科学基金(62171459, 62071366),陕西省自然科学基金(2020JZ-33, 2020JQ-814),陕西省高校科协青年人才托举计划项目(20200114),陕西省教育厅自然科学基金(21JK0683)
详细信息
    作者简介:

    钟显江:男,博士,副教授,研究方向为天线与电磁兼容、人工电磁材料设计

    许河秀:男,博士,教授,博士生导师,研究方向为超材料/超表面电磁调控机理与应用研究

    侯建强:男,博士,副教授,硕士生导师,研究方向为天线与微波电路设计

    陈蕾:女,博士,副教授,硕士生导师,研究方向为天线与微波器件设计

    肖秦琨:男,博士,教授,博士生导师,研究方向为智能机电系统

    通讯作者:

    许河秀 hxxuellen@gmail.com

  • 中图分类号: TN820

Wideband Ultralow-profile Folded Transmitarray Based on Metasurface

Funds: The National Natural Science Foundation of China (62171459, 62071366), The Natural Science Foundation of Shaanxi Province (2020JZ-33, 2020JQ-814), The Youth Talent Foudation of Shaanxi University Association for Science and Technology (20200114), The Natural Science Foundation of Shaanxi Education Department (21JK0683)
  • 摘要: 该文提出了基于超表面的宽带超低剖面折叠透射阵天线设计方法。该天线由两种超表面阵列和一个作为馈源的开口波导构成。其中,下层超表面能够将馈源发射的线极化入射波转换为交叉极化反射波,上层超表面能够实现特定线极化波的全反射和另一种线极化波的全透射。通过合理设计,该天线能够将辐射电磁波来回反射3次并在较宽频带内实现增益提升,同时其剖面高度能够降至传统透射阵的1/4。天线实测和仿真结果吻合良好,表明3 dB增益带宽达到19.6%(9.2~11.2 GHz),且9.6 GHz处峰值增益达21 dBi,峰值口径效率为30%。该文设计方法为实现宽带低剖面阵列天线设计提供了新思路。
  • 图  1  折叠透射阵天线结构与工作机理

    图  2  集成透-反射超表面单元的结构图

    图  3  集成透-反射超表面单元的反射系数和透射系数

    图  4  不同极化入射波照射下集成透-反射超表面单元在10 GHz处的各层表面电流分布

    图  5  反射型线极化转换超表面单元示意图

    图  6  反射型线极化转换超表面单元的反射系数

    图  7  不同极化入射波照射下的线极化转换反射超表面单元在10GHz处的表面电流分布

    图  8  聚焦超表面的相位分布与单元分布

    图  9  折叠透射阵天线模型

    图  10  折叠透射阵天线实物图

    图  11  折叠透射阵天线在不同频率处xoz面和yoz面的辐射方向图

    图  12  折叠透射阵天线性能随频率的变化曲线

    表  1  本文折叠透射阵天线与部分参考文献性能比较图

    文献[15]文献[16]文献[17]文献[18]本文
    中心频率(GHz)602911.510.310
    剖面高度F/3F/3F/3F/3F/4
    极化方式线极化线极化线极化圆极化线极化
    峰值增益(dBi)32.724.223.521.9421.1
    1.5/3 dB增益带宽(%)11.6(1.5 dB)13.8(3 dB)43.5(3 dB)11.6(3 dB)19.6(3 dB)
    峰值口径效率(%)25.720.232.821.830
    下载: 导出CSV
  • [1] ABDELRAHMAN A H, ELSHERBENI A Z, and YANG Fan. Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 690–697. doi: 10.1109/TAP.2013.2289313
    [2] ABDELRAHMAN A H, NAYERI P, ELSHERBENI A Z, et al. Bandwidth improvement methods of transmitarray antennas[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 2946–2954. doi: 10.1109/TAP.2015.2423706
    [3] ZHANG Xingliang, YANG Fan, XU Shenheng, et al. Dual-layer transmitarray antenna with high transmission efficiency[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6003–6012. doi: 10.1109/TAP.2020.2989555
    [4] LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
    [5] ZHANG Kuang, YUAN Yueyi, DING Xumin, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423–28430. doi: 10.1021/acsami.9b07102
    [6] DAI Junyan, ZHAO Jie, CHENG Qiang, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Light:Science & Applications, 2018, 7(1): 90. doi: 10.1038/s41377-018-0092-z
    [7] XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Deterministic approach to achieve full-polarization cloak[J]. Research, 2021, 2021: 6382172. doi: 10.34133/2021/6382172
    [8] XU Hexiu, WANG Chaohui, HU Guangwei, et al. Spin-encoded wavelength-direction multitasking Janus metasurfaces[J]. Advanced Optical Materials, 2021, 9(11): 2100190. doi: 10.1002/adom.202100190
    [9] XU Hexiu, HU Guangwei, HAN Lei, et al. Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 2019, 7(4): 1801479. doi: 10.1002/adom.201801479
    [10] XU Hexiu, CAI Tong, ZHUANG Yaqiang, et al. Dual-mode transmissive metasurface and its applications in multibeam transmitarray[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1797–1806. doi: 10.1109/TAP.2017.2673814
    [11] LEE J H, LEE C H, HOANG T V, et al. Low profile quad-beam circularly polarized antenna using transmissive metasurface[J]. IET Microwaves Antennas & Propagation, 2019, 13(10): 1690–1698. doi: 10.1049/iet-map.2018.6056
    [12] MAVRAKAKIS K, LUYEN H, BOOSKE J H, et al. Wideband transmitarrays based on polarization-rotating miniaturized-element frequency selective surfaces[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2128–2137. doi: 10.1109/TAP.2019.2949694
    [13] JIANG Zhihao, KANG Lei, YUE Taiwei, et al. Wideband transmit arrays based on anisotropic impedance surfaces for circularly polarized single-feed multibeam generation in the Q-band[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(1): 217–229. doi: 10.1109/TAP.2019.2943343
    [14] FAN Chong, CHE Wenquan, YANG Wanchen, et al. A novel PRAMC-based ultralow-profile transmitarray antenna by using ray tracing principle[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(4): 1779–1787. doi: 10.1109/TAP.2017.2670600
    [15] KODNOEIH M R D, LETESTU Y, SAULEAU R, et al. Compact folded fresnel zone plate lens antenna for mm-wave communications[J]. IEEE Antennas & Wireless Propagation Letters, 2018, 17(5): 873–876. doi: 10.1109/LAWP.2018.2820420
    [16] GE Yuehe, LIN Chengxiu, and LIU Yujie. Broadband folded transmitarray antenna based on an ultrathin transmission polarizer[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 5974–5981. doi: 10.1109/TAP.2018.2863121
    [17] LI Tangjing, WANG Guangming, CAI Tong, et al. Broadband folded transmitarray antenna with ultralow-profile based on metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(10): 7017–7022. doi: 10.1109/TAP.2021.3070679
    [18] YANG J, CHEN S T, CHEN M, et al. Folded transmitarray antenna with circular polarization based on metasuface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 806–814. doi: 10.1109/TAP2020.3016170
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1863
  • HTML全文浏览量:  605
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-03-15
  • 网络出版日期:  2022-04-17
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回