高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强化学习的智能超表面辅助无人机通信系统物理层安全算法

胡浪涛 毕松姣 刘全金 吴建岚 杨瑞 王宏

胡浪涛, 毕松姣, 刘全金, 吴建岚, 杨瑞, 王宏. 基于强化学习的智能超表面辅助无人机通信系统物理层安全算法[J]. 电子与信息学报, 2022, 44(7): 2407-2415. doi: 10.11999/JEIT211613
引用本文: 胡浪涛, 毕松姣, 刘全金, 吴建岚, 杨瑞, 王宏. 基于强化学习的智能超表面辅助无人机通信系统物理层安全算法[J]. 电子与信息学报, 2022, 44(7): 2407-2415. doi: 10.11999/JEIT211613
HU Langtao, BI Songjiao, LIU Quanjin, WU Jianlan, YANG Rui, WANG Hong. Physical Layer Security Algorithm of Reconfigurable Intelligent Surface-assisted Unmanned Aerial Vehicle Communication System Based on Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2407-2415. doi: 10.11999/JEIT211613
Citation: HU Langtao, BI Songjiao, LIU Quanjin, WU Jianlan, YANG Rui, WANG Hong. Physical Layer Security Algorithm of Reconfigurable Intelligent Surface-assisted Unmanned Aerial Vehicle Communication System Based on Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2407-2415. doi: 10.11999/JEIT211613

基于强化学习的智能超表面辅助无人机通信系统物理层安全算法

doi: 10.11999/JEIT211613
基金项目: 国家自然科学基金 (62171002),安徽省教育厅自然科学基金(KJ2019A0554)
详细信息
    作者简介:

    胡浪涛:男,1982年生,副教授,博士,研究方向为无线通信中的信号处理和机器学习

    毕松姣:女,1997年生,硕士生,研究方向为无线通信系统安全、强化学习

    刘全金:男,1971年生,教授,博士,研究方向为机器学习、无线通信、图像处理等

    吴建岚:女,1997年生,硕士生,研究方向为无线通信、强化学习

    杨瑞:女,1999年生,硕士生,研究方向为信号与信息处理

    通讯作者:

    胡浪涛 hulangtao@aqnu.edu.cn

  • 中图分类号: TN911.22

Physical Layer Security Algorithm of Reconfigurable Intelligent Surface-assisted Unmanned Aerial Vehicle Communication System Based on Reinforcement Learning

Funds: The National Natural Science Foundation of China (62171002), The Natural Science Foundation of Anhui Provincial Department of Education (KJ2019A0554)
  • 摘要: 该文从物理层安全的角度出发研究了智能超表面(RIS)辅助的无人机(UAV) 3D轨迹优化。具体地说,当RIS辅助的UAV向地面用户进行无线传输时,通过联合优化RIS相移和UAV的3D轨迹来最大化物理层安全速率。然而,由于目标函数是非凸的,传统的优化技术很难直接求解。深度强化学习能够处理无线通信中动态复杂的优化问题,该文基于强化学习双深度Q网络(DDQN)设计一种联合优化RIS相移和无人机3D轨迹算法,最大化可实现的平均安全速率。仿真结果表明,所设计的RIS辅助UAV通信优化算法可以获得比固定飞行高度的连续凸逼近算法(SCA)、随机相移下的RIS算法和没有RIS的算法有更高的安全速率。
  • 图  1  RIS辅助UAV安全通信系统

    图  2  RIS辅助无人机DDQN网络结构图

    图  3  4种方案下的平均安全速率对比

    图  4  不同高度下所达到的平均安全速率

    图  5  不同反射面下不同算法所达到的平均安全速率

    图  6  UAV的3D轨迹图

    图  7  UAV的2D平面图

    表  1  联合优化UAV轨迹和RIS相移算法(算法1)

     初始化RIS辅助UAV安全通信环境, 时隙数T, 经验回放池D
     当前网络参数$ \theta $, 目标网络参数$ {\theta ^ - } $;
     for episode = 1:E
       获得$ {s^1} $;
       for $ t $= 1:T
         通过$ \varepsilon $-贪婪算法,在状态${s^{{t} } }$下选取动作${a^{{t} } }$;
         if UAV 超出服务区域或者速度超出最大值;
           动作不再执行,并且UAV将会得到惩罚;
         end
         执行动作${a^{{t} } }$,调整UAV的轨迹,得到奖励${r^{{t} } }$和${s^{ {{t + 1} } } }$;
         将${\text{(} }{s^{{t} } },{a^{{t} } },{r^{{t} } },{s^{ {{t + 1} } } })$ 收集到经验回放池;
         ${s^{{t} } } = {s^{ {{t + 1} } } }$;
       end
       计算RIS最优相移${\theta _{ {{nt} } } }{\text{ = (} }2{\pi }/\lambda )(n - 1)d(\phi _{{t} }^{ {\text{ur} } } - \phi _{{m} }^{ {\text{rm} } })$;
       从经验池中选择一批数据${\text{(} }{s^{{t} } },{a^{{t} } },{r^{{t} } },{s^{ {{t + 1} } } })$;
       通过式(18)计算目标Q值;
       通过式(19)最小化损失函数;
       通过式(20)对每个K步更新目标网络;
     end
    下载: 导出CSV

    表  2  仿真参数设置

    参数
    服务区域, 小区个数C1000 m × 1000 m, 10000
    用户M, 时隙T, 回合E6, 3000, 300
    带宽B, UAV功率 P, 噪声值$ \sigma $2 MHz, 5 mW, –169 dBm/Hz
    $ {\tau _{\min }} $, $ {\tau _{\max }} $, N, $ {\theta _i}[1] $1 s, 3 s, 100, 0°
    $ V_{\max }^h $, $V_{ {\text{max} } }^{{v} }$,任务Dk10 m/s,10 m/s, 512~1024 kb
    飞行高度$ h_0^u $, $ {h_{\min }} $, $ {h_{\max }} $100 m, 30 m, 100 m
    折扣因子 $ \gamma $0.9
    阻塞参数a, b9.61, 0.16
    下载: 导出CSV
  • [1] ZHOU Xiaobo, WU Qingqing, YAN Shihao, et al. UAV-enabled secure communications: Joint trajectory and transmit power optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4069–4073. doi: 10.1109/TVT.2019.2900157
    [2] WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293
    [3] ZENG Yong, ZHANG Rui, and LIM T J. Throughput maximization for UAV-enabled mobile relaying systems[J]. IEEE Transactions on Communications, 2016, 64(12): 4983–4996. doi: 10.1109/TCOMM.2016.2611512
    [4] ZHAO Nan, CHENG Fen, YU F R, et al. Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment[J]. IEEE Transactions on Communications, 2018, 66(5): 2281–2294. doi: 10.1109/TCOMM.2018.2792014
    [5] ZHAN Cheng, ZENG Yong, and ZHANG Rui. Energy-efficient data collection in UAV enabled wireless sensor network[J]. IEEE Wireless Communications Letters, 2018, 7(3): 328–331. doi: 10.1109/LWC.2017.2776922
    [6] FU Yujing, MEI Haibo, WANG Kezhi, et al. Joint optimization of 3D trajectory and scheduling for solar-powered UAV systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3972–3977. doi: 10.1109/TVT.2021.3063310
    [7] YAN Shihao, ZHOU Xiangyun, YANG Nan, et al. Artificial-noise-aided secure transmission in wiretap channels with transmitter-side correlation[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8286–8297. doi: 10.1109/TWC.2016.2613860
    [8] YAN Shihao, YANG Nan, LAND I, et al. Three artificial-noise-aided secure transmission schemes in wiretap channels[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3669–3673. doi: 10.1109/TVT.2017.2779508
    [9] ZHANG Guangchi, WU Qingqing, CUI Miao, et al. Securing UAV communications via joint trajectory and power control[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1376–1389. doi: 10.1109/TWC.2019.2892461
    [10] LI An, WU Qingqing, and ZHANG Rui. UAV-enabled cooperative jamming for improving secrecy of ground wiretap channel[J]. IEEE Wireless Communications Letters, 2019, 8(1): 181–184. doi: 10.1109/LWC.2018.2865774
    [11] WU Qingqing, LIU Liang, and ZHANG Rui. Fundamental trade-offs in communication and trajectory design for UAV-enabled wireless network[J]. IEEE Wireless Communications, 2019, 26(1): 36–44. doi: 10.1109/MWC.2018.1800221
    [12] LI Sixian, DUO Bin, YUAN Xiaojun, et al. Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming[J]. IEEE Wireless Communications Letters, 2020, 9(5): 716–720. doi: 10.1109/LWC.2020.2966705
    [13] FANG Sisai, CHEN Gaojie, and LI Yonghui. Joint optimization for secure intelligent reflecting surface assisted UAV networks[J]. IEEE Wireless Communications Letters, 2021, 10(2): 276–280. doi: 10.1109/LWC.2020.3027969
    [14] FANG Junhao, YANG Zhaohui, ANJUM N, et al. Secure intelligent reflecting surface assisted UAV communication networks[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021.
    [15] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics &Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789
    [16] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798
    [17] XU Yongjun, GAO Zhengnian, WANG Zhengqiang, et al. RIS-enhanced WPCNs: Joint radio resource allocation and passive beamforming optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7980–7991. doi: 10.1109/TVT.2021.3096603
    [18] ZHANG Jiayi, DU Hongyang, SUN Qiang, et al. Physical layer security enhancement with reconfigurable intelligent surface-aided networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3480–3495. doi: 10.1109/TIFS.2021.3083409
    [19] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [20] HUANG Chongwen, MO Ronghong, and YUEN C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1839–1850. doi: 10.1109/JSAC.2020.3000835
    [21] ZHANG Yu, ZHUANG Zirui, GAO Feifei, et al. Multi-agent deep reinforcement learning for secure UAV communications[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 2020: 1–5.
    [22] FU Fang, JIAO Qi, YU F R, et al. Securing UAV-to-vehicle communications: A curiosity-driven deep Q-learning network (C-DQN) approach[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021.
    [23] ZHANG Yu, MOU Zhiyu, GAO Feifei, et al. UAV-enabled secure communications by multi-agent deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11599–11611. doi: 10.1109/TVT.2020.3014788
    [24] MEI Haibo, YANG Kun, LIU Qiang, et al. 3D-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3020–3029. doi: 10.1109/TVT.2022.3143839
    [25] WATKINS C J C H and DAYAN P. Q-learning[J]. Machine Learning, 1992, 8(3/4): 279–292. doi: 10.1007/BF00992698
    [26] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[EB/OL]. https://arxiv.org/abs/1312.5602, 2013.
    [27] NASIR Y S and GUO Dongning. Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2239–2250. doi: 10.1109/JSAC.2019.2933973
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1352
  • HTML全文浏览量:  743
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 修回日期:  2022-05-03
  • 网络出版日期:  2022-05-08
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回