Review of Defect Detection Technology of Power Equipment Based on Video Images
-
摘要: 基于视频图像的电力设备缺陷检测技术是实现电力智慧运维的关键技术之一,可解决电力设备故障自动诊断、主动预警和在线运维中存在的外部缺陷智能识别问题,减少人力资源浪费,提高电力系统巡检智能运维的频率与效率,从而弥补传统输变电设备巡检运维方式的不足。该文详细综述了当前典型的基于视频图像的输变电设备缺陷检测算法及图像处理技术,分析了传统图像处理方法及深度学习方法在电力设备缺陷检测领域应用的优缺点,总结了当前算法应用及开发平台的现状,指出了基于视频图像的输变电设备缺陷检测技术存在的问题,并展望了未来发展方向。Abstract: The defect detection technology of power equipment based on video image is one of the key technologies to realize intelligent operation and maintenance. It can solve the problems of intelligent identification of external defects in automatic fault diagnosis, active warning and online maintenance of power equipment. Moreover, it is able to reduce the waste of human resources and greatly improve the reliability of system operation and maintenance, thus making up for the shortcomings of traditional protection maintenance mode and providing technical support for the stable operation of power grid. This paper summarizes current typical defect detection algorithms and image processing technology of transmission and transformation equipment based on video images. Additionally, it analyzes the advantages and disadvantages of traditional image processing methods and deep learning methods in the field of power equipment defect detection. Finally, current algorithm development platforms are summarized, and the future development is predicted.
-
表 1 输变电设备外部缺陷示例
设备 部件 缺陷 变压器
电抗器本体 渗漏油,金属锈蚀,油位计破损,部件外观变形,呼吸器破损,硅胶变色,油位、表计读数异常 端子箱 箱门闭合异常,金属锈蚀 套管 渗漏油、油位计破损、绝缘子破损、表面污秽、油位异常 冷却系统 渗漏油,金属锈蚀,部件外观变形,表面污秽 分接开关 渗漏油,金属锈蚀,油位计破损,呼吸器破损,硅胶变色,油位异常 构架及基础 金属锈蚀,异物 断路器 本体 异物悬挂,金属锈蚀,套管破损,渗漏油,分合闸指示破损,油位计破损,表面污秽,部件外观变形,呼吸器破损,硅胶变色,分合闸指示状态异常,油位状态异常,表计读数异常 操作机构 金属锈蚀,渗漏油,油位计破损,箱门闭合异常,部件外观变形,表计读数异常 隔离开关和接地开关 本体 异物悬挂,分合闸指示破损,瓷柱破损,支柱绝缘子破损,金属锈蚀,部件外观变形,
表面污秽,分合闸指示状态异常操作机构 异物悬挂,金属锈蚀,部件外观变形,箱门闭合异常 母线 母线导体 异物悬挂,金属锈蚀,导线破损,部件外观变形, 引流线 异物悬挂,导线破损,表面污秽 绝缘子串 异物悬挂,绝缘子破损,表面污秽 支柱绝缘子,构架及基础 异物悬挂,伞裙破损,金属锈蚀,表面污秽,外观变形 母线绝缘子 异物悬挂,瓷瓶破损,金属锈蚀,表面污秽 输电线路 绝缘子 金属锈蚀,污秽,均压环损伤,均压环脱落,均压环位移 杆塔 螺栓缺失,塔身锈蚀,异物 表 2 基于视频图像的输变电设备缺陷检测算法对比
任务 方法 优点 缺点 隔离开关 传统方法 能够实现分、合状态的自动识别 临界状态的识别准确率较低 深度学习方法 分、合、不到位3种状态识别准确 算法准确率依赖样本数据量 绝缘子破损 传统方法 模型简单,常规巡检准确率高 复杂拍摄背景下误差高 深度学习方法 在复杂拍摄背景下算法表现较好 训练需大量绝缘子破损图像数据 指针式仪表 传统方法 在指针数量较少、表盘刻度均匀且图像质量好时,具有较高的准确率 每种算法对应一种仪表,鲁棒性差 深度学习方法 同一个模型对应多种仪表,鲁棒性较强 训练所需数据量大 输电线路 传统方法 算法准确率较高 算法效果过分依赖拍摄清晰度 深度学习方法 算法成熟,同一模型对应多种缺陷 缺陷样本数据获取困难 温度检测 传统方法 测温精度及灵敏度高 测温区域边界模糊等问题 深度学习方法 测温区域自动标定,边帧界清晰 红外数据集少,获取困难 -
[1] 国家能源局. 2019年11月全国电力安全生产情况[EB/OL]. http://www.nea.gov.cn/2019-12/27/c_138661484.htm, 2019.Power Safety Supervision Department of National Energy Administration. National power safety production in November 2019[EB/OL]. http://www.nea.gov.cn/2019-12/27/c_138661484.htm, 2019. [2] 普洱市人民政府. 云南滇能泗南江水电开发有限公司泗南江水电站“5·29”较大爆燃事故调查报告[EB/OL]. http://www.pes.gov.cn/info/egovinfo/1001/xxgk_content/1028-/2020-1226001.htm, 2020.Pu'er Municipal People's Government. 5.29 accident investigation report, 1029-/2020–1226001[EB/OL]. http://www.pes.gov.cn/info/egovinfo/1001/xxgk_content/1028-/2020-1226001.htm, 2020. [3] 安学民, 孙华东, 张晓涵, 等. 美国得州“2.15”停电事件分析及启示[J]. 中国电机工程学报, 2021, 41(10): 3407–3415. doi: 10.13334/j.0258-8013.pcsee.210498AN Xuemin, SUN Huadong, ZHANG Xiaohan, et al. Analysis and lessons of Texas power outage event on February 15, 2021[J]. Proceedings of the CSEE, 2021, 41(10): 3407–3415. doi: 10.13334/j.0258-8013.pcsee.210498 [4] 郭步阳. 试论人工智能技术在电力系统故障诊断中的应用[J]. 科技创新与应用, 2015(34): 206.GUO Buyang. Application of artificial intelligence technology in power system fault detection[J]. Technology Innovation and Application, 2015(34): 206. [5] MOTTALIB M, ROKONUZZAMAN M, HABIB T, et al. Fabric defect classification with geometric features using Bayesian classifier[C]. 2015 International Conference on Advances in Electrical Engineering, Dhaka, Bangladesh, 2015: 137–140. [6] XIANG C, FAN X A, and LEE T H. Face recognition using recursive fisher linear discriminant[J]. IEEE Transactions on Image Processing, 2006, 15(8): 2097–2105. doi: 10.1109/TIP.2006.875225 [7] CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/BF00994018 [8] OPELT A, PINZ A, FUSSENEGGER M, et al. Generic object recognition with boosting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3): 416–431. doi: 10.1109/TPAMI.2006.54 [9] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386 [10] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. [11] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. [12] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. [13] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031 [14] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. [15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. [16] HUANG Lichao, YANG Yi, DENG Yafeng, et al. DenseBox: Unifying landmark localization with end to end object detection[J]. arXiv: 1509.04874, 2015. doi: 10.48550/arXiv.1509.04874. [17] LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 765–781. [18] ZHOU Xingyi, ZHUO Jiacheng, and KRÄHENBÜHL P. Bottom-up object detection by grouping extreme and center points[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 850–859. [19] ZHU Chenchen, HE Yihui, and SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 840–849. [20] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9626–9635. [21] KONG Tao, SUN Fuchun, LIU Huaping, et al. FoveaBox: Beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 7389–7398. doi: 10.1109/TIP.2020.3002345 [22] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076 [23] KHAN J F, BHUIYAN S M A, and ADHAMI R R. Image segmentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83–96. doi: 10.1109/TITS.2010.2073466 [24] TREMEAU A and BOREL N. A region growing and merging algorithm to color segmentation[J]. Pattern Recognition, 1997, 30(7): 1191–1203. doi: 10.1016/S0031-3203(96)00147-1 [25] 黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报:理学版, 2020, 66(6): 519–531.HUANG Peng, ZHENG Qi, and LIANG Chao. Overview of image segmentation methods[J]. Journal of Wuhan University:Natural Science Edition, 2020, 66(6): 519–531. [26] 周挺. 基于Graph Cuts的双目图像目标分割方法研究[D]. [硕士论文], 西安理工大学, 2020.ZHOU Ting. Research on binocular image object segmentation method based on graph cuts[D]. [Master dissertation], Xi’an University of Technology, 2020. [27] FARABET C, COUPRIE C, NAJMAN L, et al. Scene parsing with multiscale feature learning, purity trees, and optimal covers[C]. The 29th International Conference on Machine Learning, Edinburgh, UK, 2012. [28] PINHEIRO P and COLLOBERT R. Recurrent convolutional neural networks for scene labeling[C]. The 31st International Conference on Machine Learning, Beijing, China, 2014: 82–90. [29] LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440. [30] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184 [31] 石延辉, 罗毅, 涂光瑜, 等. 一种适用于隔离开关的边缘提取算法[J]. 继电器, 2007, 35(12): 23–26. doi: 10.3969/j.issn.1674-3415.2007.12.006SHI Yanhui, LUO Yi, TU Guangyu, et al. An edge detectable algorithm for high-voltage isolating switch[J]. Power System Protection and Control, 2007, 35(12): 23–26. doi: 10.3969/j.issn.1674-3415.2007.12.006 [32] 陈安伟, 乐全明, 张宗益, 等. 基于机器人的变电站开关状态图像识别方法[J]. 电力系统自动化, 2012, 36(6): 101–105. doi: 10.7500/AEPS201107176CHEN Anwei, YUE Quanming, ZHANG Zongyi, et al. An image recognition method of substation breakers state based on robot[J]. Automation of Electric Power Systems, 2012, 36(6): 101–105. doi: 10.7500/AEPS201107176 [33] 邵剑雄, 闫云凤, 齐冬莲. 基于霍夫森林的变电站开关设备检测及状态识别[J]. 电力系统自动化, 2016, 40(11): 115–120. doi: 10.7500/AEPS20150524001SHAO Jianxiong, YAN Yunfeng, and QI Donglian. Substation switch detection and state recognition based on Hough forests[J]. Automation of Electric Power Systems, 2016, 40(11): 115–120. doi: 10.7500/AEPS20150524001 [34] 郭威, 赵晓鹏. 输电线路中缺失绝缘子的检测与定位[J]. 太原科技大学学报, 2021, 42(2): 116–122. doi: 10.3969/j.issn.1673-2057.2021.02.006GUO Wei and ZHAO Xiaopeng. Detection and location of missing insulators in transmission lines[J]. Journal of Taiyuan University of Science and Technology, 2021, 42(2): 116–122. doi: 10.3969/j.issn.1673-2057.2021.02.006 [35] 李浩然, 高健, 吴田, 等. 基于改进Canny算子的绝缘子裂纹检测研究[J]. 智慧电力, 2021, 49(2): 91–98. doi: 10.3969/j.issn.1673-7598.2021.02.015LI Haoran, GAO Jian, WU Tian, et al. Crack detection method of insulators based on improved canny operator[J]. Smart Power, 2021, 49(2): 91–98. doi: 10.3969/j.issn.1673-7598.2021.02.015 [36] 严宇, 邹德华, 江维, 等. 基于HOUGH变换的特高压立式绝缘子视觉检测方法研究[J]. 电力科学与工程, 2020, 36(10): 42–47. doi: 10.3969/j.ISSN.1672-0792.2020.10.007YAN Yu, ZOU Dehua, JIANG Wei, et al. Research on visual detection method of UHV vertical insulator based on HOUGH transform[J]. Electric Power Science and Engineering, 2020, 36(10): 42–47. doi: 10.3969/j.ISSN.1672-0792.2020.10.007 [37] 邢浩强, 杜志岐, 苏波. 变电站指针式仪表检测与识别方法[J]. 仪器仪表学报, 2017, 38(11): 2813–2821. doi: 10.3969/j.issn.0254-3087.2017.11.024XING Haoqiang, DU Zhiqi, and SU Bo. Detection and recognition method for pointer-type meter in transformer substation[J]. Chinese Journal of Scientific Instrument, 2017, 38(11): 2813–2821. doi: 10.3969/j.issn.0254-3087.2017.11.024 [38] 房桦, 明志强, 周云峰, 等. 一种适用于变电站巡检机器人的仪表识别算法[J]. 自动化与仪表, 2013, 28(5): 10–14. doi: 10.3969/j.issn.1001-9944.2013.05.003FANG Hua, MING Zhiqiang, ZHOU Yunfeng, et al. Meter recognition algorithm for equipment inspection robot[J]. Automation &Instrumentation, 2013, 28(5): 10–14. doi: 10.3969/j.issn.1001-9944.2013.05.003 [39] 向友君, 江文, 阮荣钜. 基于刻度准确定位的指针式仪表示数识别方法[J]. 华南理工大学学报:自然科学版, 2020, 48(10): 129–135.XIANG Youjun, JIANG Wen, and RUAN Rongju. Reading recognition method of pointer-type meter based on accurate scale localization[J]. Journal of South China University of Technology:Natural Science Edition, 2020, 48(10): 129–135. [40] 冯敏, 罗旺, 余磊, 等. 适用于无人机巡检图像的输电线路螺栓检测方法[J]. 电力科学与技术学报, 2018, 33(4): 135–140. doi: 10.3969/j.issn.1673-9140.2018.04.019FENG Min, LUO Wang, YU Lei, et al. A bolt detection method for pictures captured from an unmanned aerial vehicle in power transmission line inspection[J]. Journal of Electric Power Science and Technology, 2018, 33(4): 135–140. doi: 10.3969/j.issn.1673-9140.2018.04.019 [41] 孙启悦, 王龙. 基于超像素图像分割的变电设备故障诊断研究[J]. 浙江电力, 2017, 36(12): 86–89. doi: 10.19585/j.zjdl.201712017SUN Qiyue and WANG Long. Study on substation equipment fault diagnosis based on super-pixel segmentation[J]. Zhejiang Electric Power, 2017, 36(12): 86–89. doi: 10.19585/j.zjdl.201712017 [42] 杨洋. 电气设备红外图像分析与处理[D]. [硕士论文], 北京交通大学, 2015.YANG Yang. Infrared image analysis and processing of power equipments[D]. [Master dissertation], Beijing Jiaotong University, 2015. [43] 郭文诚, 崔昊杨, 马宏伟, 等. 基于Zernike矩特征的电力设备红外图像目标识别[J]. 激光与红外, 2019, 49(4): 503–506. doi: 10.3969/j.issn.1001-5078.2019.04.020GUO Wencheng, CUI Haoyang, MA Hongwei, et al. Infrared image target recognition of power equipment based on Zernike moment[J]. Laser &Infrared, 2019, 49(4): 503–506. doi: 10.3969/j.issn.1001-5078.2019.04.020 [44] 冯振新, 周东国, 江翼, 等. 基于改进MSER算法的电力设备红外故障区域提取方法[J]. 电力系统保护与控制, 2019, 47(5): 123–128. doi: 10.7667/PSPC180363FENG Zhenxin, ZHOU Dongguo, JIANG Yi, et al. Fault region extraction using improved MSER algorithm with application to the electrical system[J]. Power System Protection and Control, 2019, 47(5): 123–128. doi: 10.7667/PSPC180363 [45] 刘子英, 张靖, 邓芳明. 基于BP神经网络的高压隔离开关分合闸监测识别[J]. 电力系统保护与控制, 2020, 48(5): 134–140. doi: 10.19783/j.cnki.pspc.190524LIU Ziying, ZHANG Jing, and DENG Fangming. Monitoring and identification of state of opening or closing isolation switch based on BP neural network[J]. Power System Protection and Control, 2020, 48(5): 134–140. doi: 10.19783/j.cnki.pspc.190524 [46] 王舶仲, 蒋毅舟, 文超, 等. 基于生成对抗网络的隔离开关分合位置判别方法研究及应用[J]. 智慧电力, 2019, 47(10): 77–84. doi: 10.3969/j.issn.1673-7598.2019.10.012WANG Bozhong, JIANG Yizhou, WEN Chao, et al. Method for breaking-closing position discrimination of isolation switch based on generative adversarial network and its application[J]. Smart Power, 2019, 47(10): 77–84. doi: 10.3969/j.issn.1673-7598.2019.10.012 [47] 张一茗, 李少华, 陈士刚, 等. 基于ReliefF特征量优化及BP神经网络识别的高压隔离开关故障类型与位置诊断方法[J]. 高压电器, 2018, 54(2): 12–19. doi: 10.13296/j.1001-1609.hva.2018.02.003ZHANG Yiming, LI Shaohua, CHEN Shigang, et al. Fault type and position diagnosis method of high-voltage disconnectors based on reliefF characteristic quantity optimization and BP neural network recognition[J]. High Voltage Apparatus, 2018, 54(2): 12–19. doi: 10.13296/j.1001-1609.hva.2018.02.003 [48] 唐小煜, 黄进波, 冯洁文, 等. 基于U-net和YOLOv4的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报:自然科学版, 2020, 52(6): 15–21. doi: 10.6054/j.jscnun.2020088TANG Xiaoyu, HUANG Jinbo, FENG Jiewen, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4[J]. Journal of South China Normal University:Natural Science Edition, 2020, 52(6): 15–21. doi: 10.6054/j.jscnun.2020088 [49] 朱明州, 赵曙光, 王建强. 基于改进Faster R-CNN的绝缘子检测方法研究[J]. 科技风, 2021(15): 99–100. doi: 10.19392/j.cnki.1671-7341.202115042ZHU Mingzhou, ZHAO Shuguang, and WANG Jianqiang. Research on insulator detection method based on improved faster R-CNN[J]. Technology Wind, 2021(15): 99–100. doi: 10.19392/j.cnki.1671-7341.202115042 [50] 王道累, 孙嘉珺, 张天宇, 等. 基于改进生成对抗网络的玻璃绝缘子自爆缺陷检测方法[J]. 高电压技术, 2022, 48(3): 1096–1103. doi: 10.13336/j.1003-6520.hve.20210236WANG Daolei, SUN Jiajun, ZHANG Tianyu, et al. Self-explosion defect detection method of glass insulator based on improved generative adversarial network[J]. High Voltage Engineering, 2022, 48(3): 1096–1103. doi: 10.13336/j.1003-6520.hve.20210236 [51] 徐发兵, 吴怀宇, 陈志环, 等. 基于深度学习的指针式仪表检测与识别研究[J]. 高技术通讯, 2019, 29(12): 1206–1215. doi: 10.3772/j.issn.1002-0470.2019.12.006XU Fabing, WU Huaiyu, CHEN Zhihuan, et al. Research on pointer instrument detection and recognition based on deep learning[J]. Chinese High Technology Letters, 2019, 29(12): 1206–1215. doi: 10.3772/j.issn.1002-0470.2019.12.006 [52] 万吉林, 王慧芳, 管敏渊, 等. 基于Faster R-CNN和U-Net的变电站指针式仪表读数自动识别方法[J]. 电网技术, 2020, 44(8): 3097–3105. doi: 10.13335/j.1000-3673.pst.2019.1670WAN Jilin, WANG Huifang, GUAN Minyuan, et al. An automatic identification for reading of substation pointer-type meters using faster R-CNN and U-Net[J]. Power System Technology, 2020, 44(8): 3097–3105. doi: 10.13335/j.1000-3673.pst.2019.1670 [53] 张永翔, 吴功平, 刘中云, 等. 基于YOLOv3网络的输电线路防震锤和线夹检测迁移学习[J]. 计算机应用, 2020, 40(S2): 188–194.ZHANG Yongxiang, WU Gongping, LIU Zhongyun, et al. Transfer learning of transmission line damper and clamp detection based on YOLOv3 network[J]. Journal of Computer Applications, 2020, 40(S2): 188–194. [54] 阮国恒, 李文航. 基于视频联动技术的输电线路远程智能巡检方法[J]. 自动化与仪器仪表, 2021(1): 77–80,84. doi: 10.14016/j.cnki.1001-9227.2021.01.077RUAN Guoheng and LI Wenhang. Remote intelligent inspection method of transmission line based on video linkage technology[J]. Automation &Instrumentation, 2021(1): 77–80,84. doi: 10.14016/j.cnki.1001-9227.2021.01.077 [55] 吴锡, 王梓屹, 宋柯, 等. 基于Faster RCNN检测器的输电线路无人机自主巡检系统[J]. 电力信息与通信技术, 2020, 18(9): 8–15.WU Xi, WANG Ziyi, SONG Ke, et al. The autonomous inspection system of transmission line UAV based on Faster RCNN detector[J]. Electric Power Information and Communication Technology, 2020, 18(9): 8–15. [56] 刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27–33. doi: 10.13648/j.cnki.issn1674-0629.2019.02.005LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infrared images of transmission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27–33. doi: 10.13648/j.cnki.issn1674-0629.2019.02.005 [57] 李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79–84. doi: 10.13648/j.cnki.issn1674-0629.2019.12.012LI Wenpu, XIE Ke, LIAO Xiao, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved Faster RCNN[J]. Southern Power System Technology, 2019, 13(12): 79–84. doi: 10.13648/j.cnki.issn1674-0629.2019.12.012 [58] Customvision website. https://www.customvision.ai. [59] BISONG E. Google AutoML: Cloud vision[M]. BISONG E. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley: Apress, 2019: 581–598. [60] CHEN Yuntao, HAN Chenxia, LI Yanghao, et al. SimpleDet: A simple and versatile distributed framework for object detection and instance recognition[J]. Journal of Machine Learning Research, 2019, 20(156): 1–8. [61] WU Yuxin, KIRILLOV A, MASSA F, et al. Detectron2[EB/OL]. https://github.com/facebookresearch/detectron2, 2019. [62] CHEN Kai, WANG Jiaqi, PANG Jiangmiao, et al. MMDetection: Open MMLab detection toolbox and benchmark[J]. arXiv: 1906.07155, 2019. [63] MA Yanjun, YU Dianhai, WU Tian, et al. PaddlePaddle: An open-source deep learning platform from industrial practice[J]. Frontiers of Data and Computing, 2019, 1(1): 105–115. doi: 10.11871/jfdc.issn.2096.742X.2019.01.011 [64] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. [65] CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162. [66] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. [67] HINTON G, VINYALS O, and DEAN J. Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14(7): 38–39. [68] 王勋, 王新, 魏举锋. 智能巡检系统在电力行业中的应用研究[J]. 四川水力发电, 2021, 40(1): 109–112. doi: 10.3969/j.issn.1001-2184.2021.01.025WANG Xun, WANG Xin, and WEI Jufeng. Application of intelligent inspection system in electrical power industry[J]. Sichuan Water Power, 2021, 40(1): 109–112. doi: 10.3969/j.issn.1001-2184.2021.01.025 [69] 严太山, 郑晓琼, 吕雪峰, 等. 变电站自动巡检管控系统研究与应用[J]. 农村电气化, 2021(3): 41–44. doi: 10.13882/j.cnki.ncdqh.2021.03.014YAN Taishan, ZHENG Xiaoqiong, LV Xuefeng, et al. Research and application of automatic patrol check, management control system in substations[J]. Rural Electrification, 2021(3): 41–44. doi: 10.13882/j.cnki.ncdqh.2021.03.014 [70] 张海华, 陈昊, 许驰, 等. 变电站立体智能巡检新技术研究与应用[J]. 湖北电力, 2021, 45(1): 41–46. doi: 10.19308/j.hep.2021.01.007ZHANG Haihua, CHEN Hao, XU Chi, et al. Research and application of new technology of three-dimensional intelligent inspection for substations[J]. Hubei Electric Power, 2021, 45(1): 41–46. doi: 10.19308/j.hep.2021.01.007