高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂地形环境下基于GAMP-STAP的低空风切变风速估计方法

李海 谢瑞杰 谢伶莉 孟凡旺

李海, 谢瑞杰, 谢伶莉, 孟凡旺. 复杂地形环境下基于GAMP-STAP的低空风切变风速估计方法[J]. 电子与信息学报, 2023, 45(2): 576-584. doi: 10.11999/JEIT211500
引用本文: 李海, 谢瑞杰, 谢伶莉, 孟凡旺. 复杂地形环境下基于GAMP-STAP的低空风切变风速估计方法[J]. 电子与信息学报, 2023, 45(2): 576-584. doi: 10.11999/JEIT211500
LI Hai, XIE Ruijie, XIE Lingli, MENG Fanwang. Low-altitude Wind Shear Wind Speed Estimation Method Based on GAMP-STAP in Complex Terrain Environment[J]. Journal of Electronics & Information Technology, 2023, 45(2): 576-584. doi: 10.11999/JEIT211500
Citation: LI Hai, XIE Ruijie, XIE Lingli, MENG Fanwang. Low-altitude Wind Shear Wind Speed Estimation Method Based on GAMP-STAP in Complex Terrain Environment[J]. Journal of Electronics & Information Technology, 2023, 45(2): 576-584. doi: 10.11999/JEIT211500

复杂地形环境下基于GAMP-STAP的低空风切变风速估计方法

doi: 10.11999/JEIT211500
基金项目: 民机项目(MJ-2018-S-28),天津市自然基金重点项目(20JCZDJC00490),航空基金项目(20182067008),中央高校基本科研业务费项目(3122015B002)
详细信息
    作者简介:

    李海:男,教授,硕士生导师,主要研究方向为机载气象雷达信号处理、分布式目标检测、参数估计、动目标检测等

    谢瑞杰:男,硕士生,研究方向为机载气象雷达信号处理

    谢伶莉:女,硕士生,研究方向为机载气象雷达信号处理

    孟凡旺:男,高级工程师,硕士,研究方向为机载气象雷达系统设计、信号处理

    通讯作者:

    李海 haili@cauc.edu.cn

  • 中图分类号: TN959.4

Low-altitude Wind Shear Wind Speed Estimation Method Based on GAMP-STAP in Complex Terrain Environment

Funds: The Civil Aircraft Project (MJ-2018-S-28), The Key Projects of Tianjin Natural Fund(20JCZDJC00490), The Aviation Foundation of China (20182067008), The Basic Scientific Research Project of Universities of The CPC Central Committee (3122015B002)
  • 摘要: 针对机载气象雷达在复杂的地形环境下探测低空风切变时,地杂波呈现非均匀特征和难以获取足够的独立同分布(IID)样本,导致空时自适应处理(STAP)杂波抑制性能变差,使得风切变风速估计不准的问题。该文基于杂波信号稀疏特性,提出一种广义近似消息传递(GAMP)STAP方法,GAMP-STAP仅利用少量的样本在复杂地形环境下实现了风速较准确的估计。该方法首先利用杂波脊的先验信息构造稀疏字典,然后在贝叶斯框架下利用GAMP算法估计杂波幅度,恢复杂波功率谱,进而计算杂波协方差矩阵,最后构造STAP滤波器实现杂波抑制以及风切变风速估计。后续实验仿真结果证明了该方法的有效性。
  • 图  1  机载气象雷达视探测低空风切变几何模型

    图  2  GAMP-STAP的低空风切变风速估计原理框图

    图  3  GAMP算法估计待重建信号因子图

    图  4  基于GAMP-STAP的风切变风速估计方法流程图

    图  5  地杂波距离多普勒图

    图  6  机载气象雷达回波空时2维谱

    图  7  GAMP算法恢复的杂波功率谱

    图  8  不同方法风速估计结果对比

    表  1  雷达系统仿真参数

    参数参数
    载机高度(m)600阵元数8
    载机速度(m/s)87.5采样脉冲数64
    雷达波长(m)0.032主瓣方向(°)(90, 0)
    脉冲重复频率(Hz)7000杂噪比(dB)40
    距离分辨率(m)150信噪比(dB)5
    下载: 导出CSV

    表  2  算法运行时间对比

    方法运行环境计算机CPU计算复杂度运行时间(s)
    传统SBL-STAPMATLAB R2018b3.4 GHz Intel(R) Core(TM) i7-6700,内存12 GB$ O\left( {{W^3}} \right) $511
    GAMP-STAP$ O\left( {WG} \right) $73
    下载: 导出CSV
  • [1] DESHPANDE M D and STATON L. Determination of windspeed within a weather storm using airborne Doppler radar[C]. IEEE Proceedings of the SOUTHEASTCON’91, Williamsburg, USA, 1991: 508–519.
    [2] 中国民用航空局. 《新时代民航强国建设行动纲要》出台[EB/OL]. http://www.caac.gov.cn/XWZX/MHYW/201812/t20181211_193411.html, 2018.

    Civil Aviation Administration of China. Action plan for building a civil aviation power in the new era[EB/OL]. http://www.caac.gov.cn/XWZX/MHYW/201812/t20181211_193411.html, 2018.
    [3] WARD J. Space-time adaptive processing for airborne radar[C]. Proceedings of 1995 International Conference on Acoustics, Speech, and Signal Processing, Detroit, USA, 1995.
    [4] KLEMM R. Space-time adaptive processing: principles and applications [Book Review][J]. Electronics & Communication Engineering Journal, 1999, 11(4): 172.
    [5] REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893
    [6] 李海, 刘志鑫, 王杰, 等. 基于DDD-GMB的低空风切变风速估计方法[J]. 信号处理, 2020, 36(1): 67–76. doi: 10.16798/j.issn.1003-0530.2020.01.009

    LI Hai, LIU Zhixin, WANG Jie, et al. Low-altitude windshear wind speed estimation method based on DDD-GMB[J]. Journal of Signal Processing, 2020, 36(1): 67–76. doi: 10.16798/j.issn.1003-0530.2020.01.009
    [7] PECKHAM C D, HAIMOVICH A M, AYOUB T F, et al. Reduced-rank STAP performance analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 664–676. doi: 10.1109/7.845257
    [8] 李海, 周盟, 陈筱浅, 等. 基于多通道联合自适应处理的微下击暴流中心风速估计方法[J]. 电子与信息学报, 2017, 39(7): 1619–1625. doi: 10.11999/JEIT161094

    LI Hai, ZHOU Meng, CHEN Xiaoqian, et al. Multiple Doppler channels joint adaptive processing based central wind speed estimation for microburst[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1619–1625. doi: 10.11999/JEIT161094
    [9] KANG Naixin, SHANG Zheran, and DU Qinglei. Knowledge-aided structured covariance matrix estimator applied for radar sensor signal detection[J]. Sensors, 2019, 19(3): 664. doi: 10.3390/s19030664
    [10] 苏昱煜. 机载雷达自适应干扰抑制和基于先验知识的空时信号处理[D]. [博士论文], 西安电子科技大学, 2020.

    SU Yuyu. Adaptive interference suppression and knowledge aided space time signal processing for airborne radar[D]. [Ph. D. dissertation], Xidian University, 2020.
    [11] 段克清, 袁华东, 许红, 等. 稀疏恢复空时自适应处理技术研究综述[J]. 电子学报, 2019, 47(3): 748–756. doi: 10.3969/j.issn.0372-2112.2019.03.033

    DUAN Keqing, YUAN Huadong, XU Hong, et al. An overview on sparse recovery space-time adaptive processing technique[J]. Acta Electronica Sinica, 2019, 47(3): 748–756. doi: 10.3969/j.issn.0372-2112.2019.03.033
    [12] 阳召成. 基于稀疏性的空时自适应处理理论和方法[D]. [博士论文], 国防科学技术大学, 2013.

    YANG Zhaocheng. Theory and methods of sparsity-based space-time adaptive processing[D]. [Ph. D. dissertation], National University of Defense Technology, 2013.
    [13] 王千里. 基于自适应网格的稀疏信号处理方法研究[D]. [博士论文], 电子科技大学, 2020.

    WANG Qianli. Research on sparse signal processing based on adaptive grid[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
    [14] BAI Gatai, TAO Ran, ZHAO Juan, et al. Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation[J]. Signal Processing, 2017, 138: 11–15. doi: 10.1016/j.sigpro.2017.03.003
    [15] DUAN Keqing, XU Hong, YUAN Huadong, et al. Three-dimensional sparse recovery space-time adaptive processing for airborne radar[J]. The Journal of Engineering, 2019, 2019(19): 5478–5482. doi: 10.1049/joe.2019.0343
    [16] ZHU Jiang, ZHANG Qi, MENG Xiangming, et al. Vector approximate message passing algorithm for compressed sensing with structured matrix perturbation[J]. Signal Processing, 2020, 166: 107248. doi: 10.1016/j.sigpro.2019.107248
    [17] 项璟. 广义近似消息传递算法的研究与应用[D]. [硕士论文], 燕山大学, 2018.

    XIANG Jing. Research and application of generalized approximate message passing algorithm[D]. [Master dissertation], Yanshan University, 2018.
    [18] VILA J P and SCHNITER P. Expectation-maximization Gaussian-mixture approximate message passing[J]. IEEE Transactions on Signal Processing, 2013, 61(19): 4658–4672. doi: 10.1109/TSP.2013.2272287
    [19] LI Hai, WANG Jie, FAN Yi, et al. High-fidelity inhomogeneous ground clutter simulation of airborne phased array PD radar aided by digital elevation model and digital land classification data[J]. Sensors, 2018, 18(9): 2925. doi: 10.3390/s18092925
    [20] BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2005: 1–100.
    [21] 李海, 宋迪, 程伟杰, 等. 回波功率筛选与数字地表分类数据辅助的低空风切变风速估计方法[J]. 电子与信息学报, 2021, 43(8): 2286–2291. doi: 10.11999/JEIT190894

    LI Hai, SONG Di, CHENG Weijie, et al. Echo power screening and digital land classification data-assisted wind speed estimation of low-altitude wind-shear[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2286–2291. doi: 10.11999/JEIT190894
    [22] DUAN Keqing, LIU Weijian, DUAN Guangqing, et al. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP[J]. IET Radar, Sonar & Navigation, 2018, 12(5): 557–564. doi: 10.1049/iet-rsn.2017.0425
    [23] RIEDL M and POTTER L C. Knowledge-aided Bayesian space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1850–1861. doi: 10.1109/TAES.2018.2805141
    [24] RANGAN S. Generalized approximate message passing for estimation with random linear mixing[C]. 2011 IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 2011.
    [25] 高乐, 毕东杰, 彭礼彪, 等. 基于GAMP的近场毫米波成像快速算法[J]. 电子科技大学学报, 2019, 48(2): 168–173. doi: 10.3969/j.issn.1001-0548.2019.02.002

    GAO Le, BI Dongjie, PENG Libiao, et al. Fast near-field millimeter-wave imaging algorithm via generalized approximate message passing[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(2): 168–173. doi: 10.3969/j.issn.1001-0548.2019.02.002
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  193
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-06-23
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2023-02-07

目录

    /

    返回文章
    返回