Improved Parallel Combinatory Spread Spectrum Underwater Acoustic Communication Based on Gold Codes
-
摘要: 将映射序列扩频(MSSS)方法用于并行组合扩频(PCSS)水声(UWA)通信,有效降低通信信号峰均比,进而提高通信性能。但当使用Gold码作为扩频码时,由于Gold码的循环移位相加特性,导致映射信号在接收端解相关时会出现伪峰,严重降低通信系统的性能。为了减小伪峰对通信性能的影响,该文提出基于相关峰相位差法的并行组合扩频(PDCP-PCSS)和交织并行组合扩频(IPCSS)两种方法。PDCP-PCSS方法在接收端加入相关峰相位差法对伪峰进行识别和剔除,有效降低了伪峰对通信性能的影响。IPCSS方法将交织技术与并行组合扩频相结合,避免了伪峰的生成。通过仿真和海上试验验证,这两种方法相比于传统的并行组合扩频水声通信(CPCSS)方法具有更好的通信性能,PDCP-PCSS方法的通信性能最优,但适用范围仅限于3个Gold码的组合,而IPCSS方法的适用范围更广。Abstract: When Mapping Sequences Spread Spectrum (MSSS) method is applied to the Parallel Combinatory Spread Spectrum (PCSS) UnderWater Acoustic (UWA) communication, the peak-to-mean envelope power ratio of the output signal is reduced, and hence the communication performance is improved. However, if Gold codes are selected as the spread sequence, due to the property of Gold codes, there will be a pseudo correlation peak when the mapping signal is correlated with the spread sequence set. Hence, the communication performance is degraded seriously. In order to overcome the performance degradation, two new schemes are proposed in this paper, namely the Parallel Combinatory Spread Spectrum based on Phase Differences of Correlation Peaks (PDCP-PCSS) and the Interleaved Parallel Combinatory Spread Spectrum (IPCSS) respectively. PDCP-PCSS can effectively identify the pseudo correlation peak and eliminate it. IPCSS is able to generate signal without the pseudo correlation peak by adding the interleavers in the transmitter. Simulation and sea trail results show that the performance of two proposed schemes in the paper outperform the Conventional Parallel Combinatory Spread Spectrum (CPCSS). Among them, the performance of PDCP-PCSS is the best. However it is only suitable for the combination of three Gold codes while IPCSS has less limitation in usage.
-
表 1 系统仿真主要参数
参数 取值 扩频码集 9阶Gold码 调制方式 QPSK 带宽(kHz) 4 载波频率(kHz) 6 噪声功率(dBW) 4~16 通信速率(bps) 94 表 2 3种通信方法在不同水听器下的误比特数
水听器编号 CPCSS PDCP-PCSS IPCSS 1号 0 0 0 2号 0 0 0 3号 3 0 0 4号 3 0 0 5号 0 0 9 6号 0 0 0 7号 0 0 0 8号 29 0 0 9号 20 0 2 10号 21 0 0 -
[1] STOJANOVIC M, PROARKIS J G, RICE J A, et al. Green, spread spectrum underwater acoustic telemetry[C]. IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No. 98CH36259), Nice, France, 1998: 650–654. [2] ZHOU Feng, LIU Bing, NIE Donghu, et al. M-ary cyclic shift keying spread spectrum underwater acoustic communications based on virtual time-reversal mirror[J]. Sensors, 2019, 19(16): 3577. doi: 10.3390/s19163577 [3] 袁兆凯, 隋天宇, 李宇, 等. 水声扩频通信中多普勒估计与补偿算法研究[J]. 电子与信息学报, 2012, 34(1): 51–56. doi: 10.3724/SP.J.1146.2011.00528YUAN Zhaokai, SUI Tianyu, LI Yu, et al. The estimation and compensation of Doppler effect on underwater acoustic spread spectrum communication[J]. Journal of Electronics &Information Technology, 2012, 34(1): 51–56. doi: 10.3724/SP.J.1146.2011.00528 [4] 周跃海, 李芳兰, 陈楷, 等. 低信噪比条件下时间反转扩频水声通信研究[J]. 电子与信息学报, 2012, 34(7): 1685–1689. doi: 10.3724/SP.J.1146.2011.01410ZHOU Yuehai, LI Fanglan, CHEN Kai, et al. Research on time reversal spread spectrum underwater acoustic communication under low SNR[J]. Journal of Electronics &Information Technology, 2012, 34(7): 1685–1689. doi: 10.3724/SP.J.1146.2011.01410 [5] ZHU J. Proposal of parallel combinatory spread spectrum communication system[J]. IEICE Transactions on Communications B, 1991, 74(5): 207–214. [6] SASAKI S, ZHU Jinkang, and MARUBAYASHI G. Performance of parallel combinatory spread spectrum multiple access communication system[C]. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 1991: 204–208. [7] 周航程, 韩树平, 刘琨. 并行组合扩频水声通信技术研究[J]. 舰船电子工程, 2019, 39(5): 135–137,161. doi: 10.3969/j.issn.1672-9730.2019.05.033ZHOU Hangcheng, HAN Shuping, and LIU Kun. Parallel combinatory spread spectrum underwater acoustic communication technology[J]. Ship Electronic Engineering, 2019, 39(5): 135–137,161. doi: 10.3969/j.issn.1672-9730.2019.05.033 [8] 郭黎利, 衣强, 李北明. 基于r-组合的并行组合扩频通信研究[J]. 无线电通信技术, 2007, 33(4): 25–27. doi: 10.3969/j.issn.1003-3114.2007.04.009GUO Lili, YI Qiang, and LI Beiming. Parallel combinatory spectrum communication system based on r-combinatory and the study of PN sequences[J]. Radio Communications Technology, 2007, 33(4): 25–27. doi: 10.3969/j.issn.1003-3114.2007.04.009 [9] 殷敬伟, 王蕾, 张晓. 并行组合扩频技术在水声通信中的应用[J]. 哈尔滨工程大学学报, 2010, 31(7): 958–962. doi: 10.3969/j.issn.1006-7043.2010.07.023YIN Jingwei, WANG Lei, and ZHANG Xiao. The application of parallel combinatory spread spectrum in underwater acoustic communication[J]. Journal of Harbin Engineering University, 2010, 31(7): 958–962. doi: 10.3969/j.issn.1006-7043.2010.07.023 [10] 王蕾. 并行组合扩频水声通信技术研究[D]. [硕士论文], 哈尔滨工程大学, 2009.WANG Lei. Research on parallel combinatory spread spectrum underwater acoustic communication[D]. [Master dissertation], Harbin Engineering University, 2009. [11] 张野. 基于代数和的Gold序列相关性分析及扩频同步应用[J]. 通信技术, 2016, 49(7): 826–830. doi: 10.3969/j.issn.1002-0802.2016.07.006ZHANG Ye. Correlation and application of combinatory Gold sequences in spread spectrum synchronization[J]. Communications Technology, 2016, 49(7): 826–830. doi: 10.3969/j.issn.1002-0802.2016.07.006 [12] 汪俊, 王海斌, 吴立新. 远程水声通信中的多信号恒包络合成方法[J]. 哈尔滨工程大学学报, 2005, 26(4): 451–456. doi: 10.3969/j.issn.1006-7043.2005.04.007WANG Jun, WANG Haibin, and WU Lixin. A method of constant-envelope multi-signal synthesis in long-range underwater acoustic communication[J]. Journal of Harbin Engineering University, 2005, 26(4): 451–456. doi: 10.3969/j.issn.1006-7043.2005.04.007 [13] 朱近康, 贾顺, 吴晓红. 映射序列扩频通信方式及其特性[J]. 通信学报, 1994, 15(5): 63–68. doi: 10.3969/j.issn.1009-3443.2003.04.004ZHU Jinkang, JIA Shun, and WU Xiaohong. Spread spectrum communication system and properties using mapping sequences[J]. Journal of China Institute of Communications, 1994, 15(5): 63–68. doi: 10.3969/j.issn.1009-3443.2003.04.004 [14] 白宝明, 马啸, 王新梅. 随机交织器的设计与实现[J]. 通信学报, 2000, 21(6): 6–11. doi: 10.3321/j.issn:1000-436X.2000.06.002BAI Baoming, MA Xiao, and WANG Xinmei. Random interleaver design and implementation for turbo codes[J]. Journal of China Institute of Communications, 2000, 21(6): 6–11. doi: 10.3321/j.issn:1000-436X.2000.06.002 [15] DINOI L and BENEDETTO S. Design of fast-prunable S-random interleavers[J]. IEEE Transactions on Wireless Communications, 2005, 4(5): 2540–2548. doi: 10.1109/TWC.2005.853836 [16] LI Xiaowen and CHEN Zhendong. A design of improved flexible-length S-random interleaver[C]. 2011 3rd International Conference on Computer Research and Development, Shanghai, China, 2011: 391–394. [17] 华博, 毛忠阳, 康家方, 等. 四维DSSS调制信号的峰均比抑制[J]. 电讯技术, 2021, 61(5): 627–633. doi: 10.3969/j.issn.1001-893x.2021.05.016HUA Bo, MAO Zhongyang, KANG Jiafang, et al. Peak-to-average ratio suppression of four-dimensional direct sequence spread spectrum modulated signals[J]. Telecommunication Engineering, 2021, 61(5): 627–633. doi: 10.3969/j.issn.1001-893x.2021.05.016