高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蓝绿通道自适应色彩补偿的水下图像增强

周景春 卫晓靖 史金余

周景春, 卫晓靖, 史金余. 基于蓝绿通道自适应色彩补偿的水下图像增强[J]. 电子与信息学报, 2022, 44(8): 2932-2939. doi: 10.11999/JEIT211444
引用本文: 周景春, 卫晓靖, 史金余. 基于蓝绿通道自适应色彩补偿的水下图像增强[J]. 电子与信息学报, 2022, 44(8): 2932-2939. doi: 10.11999/JEIT211444
ZHOU Jingchun, WEI Xiaojing, SHI Jinyu. Underwater Image Enhancement Algorithm Based on Blue-green Channel Color Compensation[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2932-2939. doi: 10.11999/JEIT211444
Citation: ZHOU Jingchun, WEI Xiaojing, SHI Jinyu. Underwater Image Enhancement Algorithm Based on Blue-green Channel Color Compensation[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2932-2939. doi: 10.11999/JEIT211444

基于蓝绿通道自适应色彩补偿的水下图像增强

doi: 10.11999/JEIT211444
基金项目: 中央高校基本科研业务费(3132019354)
详细信息
    作者简介:

    周景春:男,1988年生,博士后,研究方向为计算机视觉、水下图像清晰化

    卫晓靖:女,1997年生,硕士生,研究方向为计算机视觉、水下图像复原

    史金余:男,1967年生,副教授,研究方向为计算机视觉、大数据处理

    通讯作者:

    史金余 sjy1967@dlmu.edu.cn

  • 中图分类号: TN911.73

Underwater Image Enhancement Algorithm Based on Blue-green Channel Color Compensation

Funds: The Foundational Research Foundation for the Central University (3132019354)
  • 摘要: 光在水中传播时受到水的吸收和悬浮粒子散射作用,导致水下图像颜色失真、对比度低、可视性差。针对上述退化问题,该文提出一种基于蓝绿通道自适应色彩补偿水下图像增强方法。首先,该方法分析水下成像模型的特点,根据蓝、绿色通道均值在3通道均值和的占比,将水下场景深度划分3个等级,利用光衰减率特性自适应补偿色彩,实现多场景色彩校正。然后对色彩补偿后的图像划分暗调、中间暗调、中间亮调、亮调4个区域,利用暗区域映射函数将图像暗区域映射到亮区域,在提升对比度的同时抑制噪声的产生。最后采用双线性插值解决分块处理产生的区域块效应。真实水下数据集实验结果表明,与现有方法相比,该方法可以提升多种场景的水下图像质量。
  • 图  1  水下成像模型

    图  2  不同等级水下场景

    图  3  算法流程图

    图  4  不同方法色彩校正对比结果

    图  5  不同方法在UIEBD数据集真实水下图像上的处理效果

    图  6  图5中部分场景细节放大图

    图  7  不同方法在UIEBD数据集真实水下图像上的处理结果

    图  8  水下图像分割结果

    表  1  水下场景深度等级划分

    蓝绿通道均值占比$ \forall ({W_{\text{G}}}{W_{\text{B}}}) \in [0,4.33) $$ \exists ({W_{\text{G}}}{W_{\text{B}}}) \in [4.33,5.33) $$ \exists ({W_{\text{G}}}{W_{\text{B}}}) \in [5.33,1] $
    场景深度1级2级3级
    下载: 导出CSV

    表  2  100张水下图像不同方法处理结果的客观指标平均值(红色粗体:第1指标值;蓝色粗体:第2指标值)

     UDCPRBETSPIBLAGDCPRGHSGBDRCBRUIE本文方法
    AG5.6946.8488.3407.1408.4006.4424.9579.7609.285
    EI55.25870.08880.50669.06681.17662.47548.02692.67889.624
    PCQI0.7880.9571.1291.0651.0361.0130.8361.0901.178
    UCIQE0.5990.6160.6240.6330.6310.6350.6040.6030.639
    UIQM1.7321.4121.5071.4721.5171.5021.5251.5281.586
    下载: 导出CSV
  • [1] 郭银景, 吴琪, 苑娇娇, 等. 水下光学图像处理研究进展[J]. 电子与信息学报, 2021, 43(2): 426–435. doi: 10.11999/JEIT190803

    GUO Yinjing, WU Qi, YUAN Jiaojiao, et al. Research progress on underwater optical image processing[J]. Journal of Electronics &Information Technology, 2021, 43(2): 426–435. doi: 10.11999/JEIT190803
    [2] ZHOU Jingchun, WANG Yanyun, ZHANG Weishi, et al. Underwater image restoration via feature priors to estimate background light and optimized transmission map[J]. Optics Express, 2021, 29(18): 28228–28245. doi: 10.1364/OE.432900
    [3] HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
    [4] ZHOU Jingchun, ZHANG Dehuan, and ZHANG Weishi. Classical and state-of-the-art approaches for underwater image defogging: A comprehensive survey[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(12): 1745–1769. doi: 10.1631/FITEE.2000190
    [5] GUO Yecai, LI Hanyu, and ZHUANG Peixian. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 2020, 45(3): 862–870. doi: 10.1109/joe.2019.2911447
    [6] 杨爱萍, 郑佳, 王建, 等. 基于颜色失真去除与暗通道先验的水下图像复原[J]. 电子与信息学报, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483

    YANG Aiping, ZHENG Jia, WANG Jian, et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483
    [7] 代成刚, 林明星, 王震, 等. 基于亮通道色彩补偿与融合的水下图像增强[J]. 光学学报, 2018, 38(11): 1110003. doi: 10.3788/AOS201838.1110003

    DAI Chenggang, LIN Mingxing, WANG Zhen, et al. Color compensation based on bright channel and fusion for underwater image enhancement[J]. Acta Optica Sinica, 2018, 38(11): 1110003. doi: 10.3788/AOS201838.1110003
    [8] 杨爱萍, 张莉云, 曲畅, 等. 基于加权L1正则化的水下图像清晰化算法[J]. 电子与信息学报, 2017, 39(3): 626–633. doi: 10.11999/JEIT160481

    YANG Aiping, ZHANG Liyun, QU Chang, et al. Underwater images visibility improving algorithm with weighted L1 regularization[J]. Journal of Electronics &Information Technology, 2017, 39(3): 626–633. doi: 10.11999/JEIT160481
    [9] SONG Huajun and WANG Rui. Underwater Image enhancement based on multi-scale fusion and global stretching of dual-model[J]. Mathematics, 2021, 9(6): 595. doi: 10.3390/math9060595
    [10] WEN Haocheng, TIAN Yonghong, HUANG Tiejun, et al. Single underwater image enhancement with a new optical model[C]. 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013: 753–756.
    [11] LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376–4389. doi: 10.1109/TIP.2019.2955241
    [12] DREWS P JR, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images[C]. 2013 IEEE International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 2013: 825–830.
    [13] FU Xueyang, ZHUANG Peixian, HUANG Yue, et al. A retinex-based enhancing approach for single underwater image[C]. 2014 IEEE International Conference on Image Processing, Paris, France, 2014: 4572–4576.
    [14] FU Xueyang, FAN Zhiwei, LING Mei, et al. Two-step approach for single underwater image enhancement[C]. 2017 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, 2017: 789–794.
    [15] PENG Y T and COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579–1594. doi: 10.1109/TIP.2017.2663846
    [16] PENG Y T, CAO Keming, and COSMAN P C. Generalization of the dark channel prior for single image restoration[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2856–2868. doi: 10.1109/TIP.2018.2813092
    [17] HUANG Dongmei, WANG Yan, SONG Wei, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition[C]. 24th International Conference on Multimedia Modeling, Bangkok, Thailand, 2018: 453–465.
    [18] LI Chongyi, GUO Jichang, PANG Yanwei, et al. Single underwater image restoration by blue-green channels dehazing and red channel correction[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 1731–1735.
    [19] ZHUANG Peixian, LI Chongyi, and WU Jiamin. Bayesian retinex underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104171. doi: 10.1016/j.engappai.2021.104171
    [20] YANG Miao and SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062–6071. doi: 10.1109/TIP.2015.2491020
    [21] LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1753–1766. doi: 10.1109/TFUZZ.2018.2889018
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  1099
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-03-01
  • 网络出版日期:  2022-04-11
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回