高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

未来低轨信息网络发展与架构展望

王宁远 陈东 刘亮 秦兆涛 梁冰苑

王宁远, 陈东, 刘亮, 秦兆涛, 梁冰苑. 未来低轨信息网络发展与架构展望[J]. 电子与信息学报, 2023, 45(2): 396-406. doi: 10.11999/JEIT211400
引用本文: 王宁远, 陈东, 刘亮, 秦兆涛, 梁冰苑. 未来低轨信息网络发展与架构展望[J]. 电子与信息学报, 2023, 45(2): 396-406. doi: 10.11999/JEIT211400
WANG Ningyuan, CHEN Dong, LIU Liang, QIN Zhaotao, LIANG Bingyuan. Development Trend and Architecture Prospect of Future Low-Earth-Orbit Information Networks[J]. Journal of Electronics & Information Technology, 2023, 45(2): 396-406. doi: 10.11999/JEIT211400
Citation: WANG Ningyuan, CHEN Dong, LIU Liang, QIN Zhaotao, LIANG Bingyuan. Development Trend and Architecture Prospect of Future Low-Earth-Orbit Information Networks[J]. Journal of Electronics & Information Technology, 2023, 45(2): 396-406. doi: 10.11999/JEIT211400

未来低轨信息网络发展与架构展望

doi: 10.11999/JEIT211400
基金项目: 国家自然科学基金(61875230),国家重点研发计划(2020YFB1806102)
详细信息
    作者简介:

    王宁远:男,博士,研究方向为卫星通信及卫星网络

    陈东:男,博士,研究员,研究方向为无线通信、移动通信及卫星通信系统

    刘亮:男,博士,高级工程师,研究方向为网络编码及卫星通信

    秦兆涛:男,博士,研究方向为卫星通信及5G无线接入网

    梁冰苑:女,博士,高级工程师,研究方向为卫星通信及卫星网络

    通讯作者:

    陈东 phddchen@sina.com

  • 中图分类号: TN927; TP393.2

Development Trend and Architecture Prospect of Future Low-Earth-Orbit Information Networks

Funds: The National Natural Science Foundation of China (61875230), The National Key Research and Development Program (2020YFB1806102)
  • 摘要: 近年来,伴随着运载、卫星、通信、网络、智能等技术的发展,天基网络形态正在发生质的变化。低轨(LEO)星座网络已经成为众多应用场景、业务承载需求的新选项,有向着全球覆盖、天地一体、多业务承载、持续演进、安全可控的天基通用信息网络基础设施发展的趋势,而这样的愿景对未来低轨星座网络架构提出了更高的要求。该文首先从空间网络、先进卫星以及天地网络融合3方面技术领域对近年来低轨星座网络相关技术的发展现状进行了概述,并对低轨星座网络发展的愿景与趋势进行了分析研判。在此基础上,该文提出基于软件定义(SDN)和网络功能虚拟化(NFV)的全云化卫星-5G融合网络架构,使网络具备架构可编程、网络功能抽象解耦以及去中心化的核心优势,辅以意图驱动网络等智能网络运行管理方法,实现网络的多业务承载、持续演进、自动化管理等能力。最后,该文对需重点关注的技术方向进行了展望。
  • 图  1  低轨信息网络愿景

    图  2  软件定义星座网络系统示意图

    图  3  软件定义星座网络架构

    图  4  互联保障层示意图

    图  5  低轨信息网络意图驱动示意图

  • [1] 赛迪顾问. “新基建”之中国卫星互联网产业发展研究白皮书[EB/OL]. https://n2.sinaimg.cn/tech/cbc3161f/20200528/SatelliteInternetWhitePaper.pdf, 2020.
    [2] DEL PORTILLO I, CAMERON B G, and CRAWLEY E F. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband[J]. Acta Astronautica, 2019, 159: 123–135. doi: 10.1016/j.actaastro.2019.03.040
    [3] WANG Ningyuan, DONG Chen, LIU Liang, et al. An SDN based highly reliable in-band control framework for LEO mega-constellations[C]. The 6th International Conference on Computer and Communication Systems (ICCCS), Chengdu, China, 2021.
    [4] ALBULET M. Spacex non-geostationary satellite system: Attachment a technical information to supplement schedules[R]. SAT-LOA-20161115-00118, 2016.
    [5] CHAUDHRY A U and YANIKOMEROGLU H. Laser inter-satellite links in a starlink constellation[J]. arXiv preprint arXiv: 2103.00056, 2021.
    [6] SUN Zhili. Satellite Networking: Principles and Protocols[M]. Hoboken: John Wiley & Sons, 2005.
    [7] 许枫, 尤政. CCSDS空间通信协议及其与互联网通信协议的比较[J]. 中国航天, 2007(5): 26–29.

    XU Feng and YOU Zheng. CCSDS space communications protocol and its comparison with internet protocols[J]. Aerospace China, 2007(5): 26–29.
    [8] FARRELL S and CAHILL V. Delay-and Disruption-Tolerant Networking[M]. Boston: Artech House, Inc. , 2006.
    [9] 3GPP. Solutions for NR to support Non-terrestrial networks (NTN)[EB/OL]. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3525, 2019.
    [10] LIOLIS K, GEURTZ A, SPERBER R, et al. Use cases and scenarios of 5G integrated satellite-terrestrial networks for enhanced mobile broadband: The SaT5G approach[J]. International Journal of Satellite Communications and Networking, 2019, 37(2): 91–112. doi: 10.1002/sat.1245
    [11] HOLMES M. South Korean Telco to test satellite for 5G backhaul in demonstration[EB/OL]. https://www.satellitetoday.com/5g/2021/02/04/south-korean-telco-to-test-satellite-for-5g-backhaul-in-demonstration/, 2021.
    [12] JEWETT R. MediaTek, Inmarsat demonstrate 5G satellite IoT data connection[EB/OL]. https://www.satellitetoday.com/iiot/2020/08/19/mediatek-inmarsat-demonstrate-5g-satellite-iot-data-connection/, 2020.
    [13] BOYLE A. Project Kuiper plus AWS: How Amazon’s cloud and satellite internet ventures mesh[EB/OL]. https://www.geekwire.com/2020/project-kuiper-plus-aws-amazons-cloud-satellite-internet-ventures-mesh/, 2020.
    [14] MOSS S. Microsoft azure space teams up with SpaceX's starlink and SES's O3b[EB/OL]. https://www.datacenterdynamics.com/en/news/microsoft-azure-space-teams-spacexs-starlink-and-sess-o3b/, 2020.
    [15] FORBES S. Blackjack[EB/OL]. https://www.darpa.mil/program/blackjack/, 2019.
    [16] 杨峰义, 张建敏, 王海宁, 等. 5G网络架构[M]. 北京: 电子工业出版社, 2017.
    [17] FERRÚS R, KOUMARAS H, SALLENT O, et al. SDN/NFV-enabled satellite communications networks: Opportunities, scenarios and challenges[J]. Physical Communication, 2016, 18: 95–112. doi: 10.1016/j.phycom.2015.10.007
    [18] SHENG Min, WANG Yu, LI Jiandong, et al. Toward a flexible and reconfigurable broadband satellite network: Resource management architecture and strategies[J]. IEEE Wireless Communications, 2017, 24(4): 127–133. doi: 10.1109/MWC.2017.1600173
    [19] JEWETT R. Viasat pushes ViaSat-3 satellite launch to 2022[EB/OL]. https://www.satellitetoday.com/business/2021/02/04/viasat-pushes-viasat-3-satellite-launch-to-2022/, 2021.
    [20] 王天枢, 林鹏, 董芳, 等. 空间激光通信技术发展现状及展望[J]. 中国工程科学, 2020, 22(3): 92–99. doi: 10.15302/J-SSCAE-2020.03.014

    WANG Tianshu, LIN Peng, DONG Fang, et al. Progress and prospect of space laser communication technology[J]. Strategic Study of CAE, 2020, 22(3): 92–99. doi: 10.15302/J-SSCAE-2020.03.014
    [21] CLARK S. SpaceX launches first full batch of laser-equipped Starlink satellites[EB/OL]. https://spaceflightnow.com/2021/09/14/spacex-launches-first-full-batch-of-laser-equipped-starlink-satellites/, 2021.
    [22] 李峰, 禹航, 丁睿, 等. 我国空间互联网星座系统发展战略研究[J]. 中国工程科学, 2021, 23(4): 137–144. doi: 10.15302/J-SSCAE-2021.04.016

    LI Feng, YU Hang, DING Rui, et al. Development strategy of space internet constellation system in China[J]. Strategic Study of CAE, 2021, 23(4): 137–144. doi: 10.15302/J-SSCAE-2021.04.016
    [23] 原晋谦, 罗一丹, 高薇薇. 国外Q/V频段通信卫星发展态势分析[J]. 国际太空, 2020(7): 42–46. doi: 10.3969/j.issn.1009-2366.2020.07.011
    [24] PAPA A, DE COLA T, VIZARRETA P, et al. Design and evaluation of reconfigurable SDN LEO constellations[J]. IEEE Transactions on Network and Service Management, 2020, 17(3): 1432–1445. doi: 10.1109/TNSM.2020.2993400
    [25] 陈山枝. 关于低轨卫星通信的分析及我国的发展建议[J]. 电信科学, 2020, 36(6): 1–13. doi: 10.11959/j.issn.1000-0801.2020181

    CHEN Shanzhi. Analysis of LEO satellite communication and suggestions for its development strategy in China[J]. Telecommunications Science, 2020, 36(6): 1–13. doi: 10.11959/j.issn.1000-0801.2020181
    [26] LOVELLY T M and GEORGE A D. Comparative analysis of present and future space-grade processors with device metrics[J]. Journal of Aerospace Information Systems, 2017, 14(3): 184–197. doi: 10.2514/1.I010472
  • 加载中
图(5)
计量
  • 文章访问数:  1545
  • HTML全文浏览量:  986
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-04-19
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2023-02-07

目录

    /

    返回文章
    返回