高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

零前缀OFDM中智能反射表面环境下干扰抑制算法研究

曾嵘 邵智敏

曾嵘, 邵智敏. 零前缀OFDM中智能反射表面环境下干扰抑制算法研究[J]. 电子与信息学报, 2022, 44(7): 2358-2365. doi: 10.11999/JEIT211389
引用本文: 曾嵘, 邵智敏. 零前缀OFDM中智能反射表面环境下干扰抑制算法研究[J]. 电子与信息学报, 2022, 44(7): 2358-2365. doi: 10.11999/JEIT211389
ZENG Rong, SHAO Zhimin. Research on Interference Suppression Algorithm in Reconfigurable Intelligent Surface Environment in ZP-OFDM[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2358-2365. doi: 10.11999/JEIT211389
Citation: ZENG Rong, SHAO Zhimin. Research on Interference Suppression Algorithm in Reconfigurable Intelligent Surface Environment in ZP-OFDM[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2358-2365. doi: 10.11999/JEIT211389

零前缀OFDM中智能反射表面环境下干扰抑制算法研究

doi: 10.11999/JEIT211389
基金项目: 东南大学移动通信国家重点实验室开放研究基金(2020D-13),之江实验室开放课题(2019LC0AB02)
详细信息
    作者简介:

    曾嵘:男,1976年生,副教授,研究方向为无线移动通信

    邵智敏:男,1997年生,硕士生,研究方向为无线通信系统

    通讯作者:

    邵智敏 shaozm1018@163.com

  • 中图分类号: TN911.7

Research on Interference Suppression Algorithm in Reconfigurable Intelligent Surface Environment in ZP-OFDM

Funds: The Open Research Foundation of the State Key Laboratory of Mobile Communication, Southeast University (2020D-13), The Open Project of Zhijiang Laboratory (2019LC0AB02)
  • 摘要: 在智能反射表面(RIS)场景下的零前缀正交频分复用(ZP-OFDM)系统中由于反射元件系数转换引起的等效信道时变,其破坏了正交频分复用(OFDM)系统的正交性并产生严重的子载波间干扰(ICI)。该文通过构建该场景下的系统传输模型,通过分析ICI功率和对反射元件系数转换时变特性进行建模,利用构建子载波间干扰抑制矩阵对ICI进行补偿,抑制由于反射系数变化造成的等效时变信道对系统性能的影响。仿真结果表明,子载波间干扰得到了有效抑制,该文提出的干扰抑制算法对于系统的传输性能有较明显的提升。
  • 图  1  RIS中信号传输框图

    图  2  ZP-OFDM信号接收图

    图  3  切换时间长度d和ICI功率的关系图

    图  4  误码率和切换长度d的关系图

    图  5  ICI功率和切换长度d的关系图

    图  6  提出算法补偿后误码率性能比较图

  • [1] NOUROLLAHI H and MAGHREBI S G. Evaluation of cyclic prefix length in OFDM system based for Rayleigh fading channels under different modulation schemes[C]. 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 2017: 164–169.
    [2] AN C and RYU H G. Spectrum efficient multidimensional OFDM-CDIM communication system[C]. 2020 23rd International Symposium on Wireless Personal Multimedia Communications (WPMC), Okayama, Japan, 2020: 1–4.
    [3] ZHANG Shunqing, WU Qingqing, XU Shugong, et al. Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 33–56. doi: 10.1109/COMST.2016.2594120
    [4] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
    [5] LIANG Yingchang, LONG Ruizhe, ZHANG Qianqian, et al. Large intelligent surface/antennas (LISA): Making reflective radios smart[J]. Journal of Communications and Information Networks, 2019, 4(2): 40–50. doi: 10.23919/JCIN.2019.8917871
    [6] LU Ruitianyi. Energy-efficiency optimization in dual reconfigurable intelligent surfaces wireless communication system[C]. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT), Changsha, China, 2021: 470–473.
    [7] HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [8] ZENG Shuhao, ZHANG Hongliang, DI Boya, et al. Reconfigurable Intelligent Surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization[J]. IEEE Communications Letters, 2021, 25(1): 269–273. doi: 10.1109/LCOMM.2020.3025345
    [9] YANG Liang, MENG Fanxu, WU Qingqing, et al. Accurate closed-form approximations to channel distributions of RIS-aided wireless systems[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1985–1989. doi: 10.1109/LWC.2020.3010512
    [10] MA Xiaoli, YE Hao, and LI Ye. Learning assisted estimation for time-varying channels[C]. 2018 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018: 1–5.
    [11] 陈婷, 洪伟, 郑昱, 等. 基于OFDM的毫米波通信多径信道模型分析[J]. 火控雷达技术, 2020, 49(2): 93–96. doi: 10.19472/j.cnki.1008-8652.2020.02.018

    CHEN Ting, HONG Wei, ZHENG Yu, et al. An analysis of multipath channel model for millimeter wave communication based on OFDM[J]. Fire Control Radar Technology, 2020, 49(2): 93–96. doi: 10.19472/j.cnki.1008-8652.2020.02.018
    [12] ZHAO Shiduo, YAN Shefeng, and XU Lijun. Doppler estimation based on HFM signal for underwater acoustic time-varying multipath channel[C]. 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 2019: 1–6.
    [13] SARASWATHI K and RAVISHANKAR S. Efficient estimation and compensation of Doppler shift for OFDM signals in underwater communications[C]. 2016 Sixth International Symposium on Embedded Computing and System Design (ISED), Patna, India, 2016: 137–141.
    [14] MAHMUD H, HOSSAIN M, KHAN A A, et al. Performance analysis of OFDM, W-OFDM and F-OFDM under rayleigh fading channel for 5G wireless communication[C]. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 2020: 1172–1177.
    [15] GHOSH M. Improved equalization for coded, zero-padded OFDM (ZP-OFDM) systems[C]. 2007 IEEE International Conference on Communications, Glasgow, UK, 2007: 4263–4268.
    [16] LOWE D and HUANG Xiaojing. Adaptive overlap-add equalization for MB-OFDM ultra-wideband[C]. 2006 International Symposium on Communications and Information Technologies, Bangkok, Thailand, 2006: 644–648.
    [17] YOUSSEF A, DRIESSEN P F, GEBALI F, et al. Enhancement of time compression overlap-add using multirate downsample upsample shift add algorithm[C]. 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, Canada, 2017: 1–5.
    [18] WANG Kai, WEI Haijian, HE Wei, et al. Dynamic measurement for compressed sensing based channel estimation in OFDM systems[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 106–110.
    [19] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Channel estimation for RIS-empowered multi-user MISO wireless communications[J]. IEEE Transactions on Communications, 2021, 69(6): 4144–4157. doi: 10.1109/TCOMM.2021.3063236
    [20] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5.
    [21] 尹海帆, 李展鹏. 一种智能超表面的反射系数计算方法及系统[P]. 中国专利, 112838884A, 2021.

    YIN Haifan and LI Zhanpeng. Method and system for calculating reflection coefficient of intelligent metasurface[P]. China Patent, 112838884A, 2021.
    [22] KHEDKAR A R, MURUGAN M, and MATE A A. ICI cancellation using Raised Cosine windowing in OFDM system[C]. 2014 Annual IEEE India Conference (INDICON), Pune, India, 2014: 1–4.
  • 加载中
图(6)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  172
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-05-11
  • 录用日期:  2022-05-24
  • 网络出版日期:  2022-05-27
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回