高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态参数HMM的水声信号线谱轨迹提取方法

罗昕炜 李磊 沈子涵

罗昕炜, 李磊, 沈子涵. 基于动态参数HMM的水声信号线谱轨迹提取方法[J]. 电子与信息学报, 2022, 44(6): 1956-1965. doi: 10.11999/JEIT211374
引用本文: 罗昕炜, 李磊, 沈子涵. 基于动态参数HMM的水声信号线谱轨迹提取方法[J]. 电子与信息学报, 2022, 44(6): 1956-1965. doi: 10.11999/JEIT211374
LUO Xinwei, LI Lei, SHEN Zihan. Line Spectrum Trajectory Extraction Method of Underwater Acoustic Signal Based on Dynamic Parameter HMM[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1956-1965. doi: 10.11999/JEIT211374
Citation: LUO Xinwei, LI Lei, SHEN Zihan. Line Spectrum Trajectory Extraction Method of Underwater Acoustic Signal Based on Dynamic Parameter HMM[J]. Journal of Electronics & Information Technology, 2022, 44(6): 1956-1965. doi: 10.11999/JEIT211374

基于动态参数HMM的水声信号线谱轨迹提取方法

doi: 10.11999/JEIT211374
基金项目: 国家自然科学基金(12174053, 91938203),中央高校基本科研业务费专项基金(2242021k30019)
详细信息
    作者简介:

    罗昕炜:男,1978年生,副教授,博士生导师,研究方向为统计信号处理、水声信号处理

    李磊:男,1998年生,硕士生,研究方向为信号与信息处理

    沈子涵:男,1996年生,硕士,研究方向为信号与信息处理

    通讯作者:

    罗昕炜 luoxinwei@seu.edu.cn

  • 中图分类号: TN911.7

Line Spectrum Trajectory Extraction Method of Underwater Acoustic Signal Based on Dynamic Parameter HMM

Funds: The National Natural Science Foundation of China (12174053, 91938203), The Fundamental Research Funds for the Central Universities (2242021k30019)
  • 摘要: 针对传统隐马尔可夫模型(HMM)方法提取时变线谱与多线谱的能力较弱以及动态规划过程计算量过大的问题,该文提出一种基于动态参数的1维隐马尔可夫模型(1D-HMM)的方法用于水声信号低频分析与记录(LOFAR)图中的线谱轨迹提取。该方法将时变频率状态建模为1阶马尔可夫过程,利用Viterbi算法循环提取多条线谱轨迹。在动态规划的迭代过程中,通过实时计算序列的1阶导数动态调整HMM中的状态转移概率矩阵,提升了对线谱轨迹的提取能力和多线谱的分辨能力;设计了一种基于动态滑动窗口的功率谱累积方法估计线谱的生灭,剔除虚假的线谱轨迹并判断线谱轨迹提取的结束。同时,该方法在实现过程中设计了对LOFAR图数据的块处理策略,大大减少了计算量。仿真和实际数据的处理结果表明,该方法在低信噪比条件下能够有效地检测和跟踪复杂时变频谱的频率状态,并有较好运行效率,为声呐设备的弱信号检测提供了良好的技术支持。
  • 图  1  基于分块处理的线谱轨迹提取框架

    图  2  基于动态参数的线谱检测流程图

    图  3  基于滑动窗的线谱轨迹的生灭分析示意图

    图  4  待检测的LOFAR图与线谱轨迹示意

    图  5  6种方法的线谱轨迹提取结果比较

    图  6  对3根线谱的检测概率对比

    图  7  实验示意图

    图  8  数据1、数据2的LOFAR图及线谱轨迹提取结果

    表  1  不同方法的处理时间和PD, PF

    方法时间 (s)PD (%)PF (%)
    1D-HMM13.24864.0543.31
    1DW-HMM12.54670.2717.41
    DA-HMM16.52410010.65
    DAW-HMM14.1291001.85
    2D-HMM485.9810010.76
    2DW-HMM483.481001.85
    下载: 导出CSV
  • [1] 方世良, 杜栓平, 罗昕炜, 等. 水声目标特征分析与识别技术[J]. 中国科学院院刊, 2019, 34(3): 297–305. doi: 10.16418/j.issn.1000-3045.2019.03.007

    FANG Shiliang, DU Shuanping, LUO Xinwei, et al. Development of underwater acoustic target feature analysis and recognition technology[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(3): 297–305. doi: 10.16418/j.issn.1000-3045.2019.03.007
    [2] 马凯, 蔡昱明, 王易川, 等. 基于噪声抑制门的两级自适应线谱增强算法[J]. 电子与信息学报, 2021, 43(3): 773–780. doi: 10.11999/JEIT200540

    MA Kai, CAI Yuming, WANG Yichuan, et al. An algorithm of two-level adaptive line-spectrum enhancement based on noise suppression gate[J]. Journal of Electronics &Information Technology, 2021, 43(3): 773–780. doi: 10.11999/JEIT200540
    [3] 王学成, 王鲁军, 洪常委. 一种基于DOA分布信息熵加权的线谱目标检测方法[J]. 声学技术, 2021, 40(1): 117–122. doi: 10.16300/j.cnki.1000-3630.2021.01.018

    WANG Xuecheng, WANG Lujun, and HONG Changwei. A linear spectrum target detection method based on DOA distribution information entropy weighting[J]. Technical Acoustics, 2021, 40(1): 117–122. doi: 10.16300/j.cnki.1000-3630.2021.01.018
    [4] PARIS S and JAUFFRET C. Frequency line tracking using HMM-based schemes [passive sonar][J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 439–449. doi: 10.1109/TAES.2003.1207256
    [5] SONG T L, KIM H W, and MUSICKI D. Iterative joint integrated probabilistic data association for multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 642–653. doi: 10.1109/TAES.2014.130571
    [6] PULFORD G W and LA SCALA B F. Multihypothesis viterbi data association: Algorithm development and assessment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 583–609. doi: 10.1109/TAES.2010.5461643
    [7] KIM C, LI Fuxin, CIPTADI A, et al. Multiple hypothesis tracking revisited[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4696–4704.
    [8] STREIT R L and BARRETT R F. Frequency line tracking using hidden Markov models[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(4): 586–598. doi: 10.1109/29.52700
    [9] BARRETT R F and HOLDSWORTH D A. Frequency tracking using hidden Markov models with amplitude and phase information[J]. IEEE Transactions on Signal Processing, 1993, 41(10): 2965–2976. doi: 10.1109/78.277803
    [10] XIE X and EVANS R J. Multiple target tracking and multiple frequency line tracking using hidden Markov models[J]. IEEE Transactions on Signal Processing, 1991, 39(12): 2659–2676. doi: 10.1109/78.107416
    [11] XIIE X and EVANS R J. Multiple frequency line tracking with hidden Markov models - further results[J]. IEEE Transactions on Signal Processing, 1993, 41(1): 334. doi: 10.1109/TSP.1993.193150
    [12] XIANYA X and EVANS R J. Multiple frequency line tracking using hidden Markov/A models[C]. The 29th IEEE Conference on Decision and Control, Honolulu, USA, 1990: 847–852.
    [13] XIE Xianya, ZHU Qiang, and LI Huangrun. Some improvements in the HMM based multiple frequency line tracking algorithms[C]. Proceedings of the Third International Conference on Signal Processing, Beijing, China, 1996: 229–232.
    [14] VAN CAPPEL D and ALINAT P. Frequency line extractor using multiple hidden Markov models[C]. IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings, Nice, France, 1998: 1481–1485.
    [15] PARIS S and JAUFFRET C. A new tracker for multiple frequency line[C]. 2001 IEEE Aerospace Conference Proceedings, Big Sky, USA, 2001: 4/1771–4/1782.
    [16] PULFORD G and TYSON K. A high performance 1-D hidden Markov model tracker for passive sonar systems[C]. Undersea Defence Technology, Rotterdam, Netherlands, 2015.
    [17] LUO Xinwei and SHEN Zihan. A sensing and tracking algorithm for multiple frequency line components in underwater acoustic signals[J]. Sensors, 2019, 19(22): 4866. doi: 10.3390/s19224866
    [18] LUO Xinwei and SHEN Zihan. A space-frequency joint detection and tracking method for line-spectrum components of underwater acoustic signals[J]. Applied Acoustics, 2021, 172: 107609. doi: 10.1016/j.apacoust.2020.107609
    [19] 吴毅斌, 翟春平, 张宇, 等. 基于隐马尔可夫模型的舰船水下噪声评估方法[J]. 舰船科学技术, 2019, 41(9): 121–124. doi: 10.3404/j.issn.1672-7649.2019.09.023

    WU Yibin, ZHAI Chunping, ZHANG Yu, et al. Evaluation method of ship’s underwater noise based on HMM[J]. Ship Science and Technology, 2019, 41(9): 121–124. doi: 10.3404/j.issn.1672-7649.2019.09.023
    [20] ABEL J S, LEE H J, and LOWELL A P. An image processing approach to frequency tracking (application to sonar data)[C]. 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, USA, 1992: 561–564.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  571
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-03-12
  • 录用日期:  2022-03-22
  • 网络出版日期:  2022-03-26
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回