高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机中继协助的有限码长隐蔽通信

胡锦松 吴林梅 束锋 陈由甲 郑海峰

胡锦松, 吴林梅, 束锋, 陈由甲, 郑海峰. 无人机中继协助的有限码长隐蔽通信[J]. 电子与信息学报, 2022, 44(3): 1006-1013. doi: 10.11999/JEIT211372
引用本文: 胡锦松, 吴林梅, 束锋, 陈由甲, 郑海峰. 无人机中继协助的有限码长隐蔽通信[J]. 电子与信息学报, 2022, 44(3): 1006-1013. doi: 10.11999/JEIT211372
HU Jinsong, WU Linmei, SHU Feng, CHEN Youjia, ZHENG Haifeng. UAV-relay Assisted Covert Communication with Finite Block-length[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1006-1013. doi: 10.11999/JEIT211372
Citation: HU Jinsong, WU Linmei, SHU Feng, CHEN Youjia, ZHENG Haifeng. UAV-relay Assisted Covert Communication with Finite Block-length[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1006-1013. doi: 10.11999/JEIT211372

无人机中继协助的有限码长隐蔽通信

doi: 10.11999/JEIT211372
基金项目: 国家自然科学基金(62001116, 62071234, 61971139, 61771244)
详细信息
    作者简介:

    胡锦松:男,1989年生,博士,讲师,研究方向为隐蔽通信、物理层安全、天线阵列信号处理、无人机通信等

    吴林梅:女,1997年生,硕士生,研究方向为隐蔽通信、无人机通信等

    束锋:男,1973年生,博士,博士生导师,教授,研究方向为无线信息安全传输、大规模MIMO、无人机通信、无线定位技术等

    陈由甲:女,1983年生,博士,博士生导师,教授,研究方向为移动通信、边缘计算、工业物联网、深度学习等

    郑海峰:男,1978年生,博士,博士生导师,教授,研究方向为智能物联网、车联网、无线感知、张量理论及其应用等

    通讯作者:

    束锋 shufeng@hainanu.edu.cn

  • 中图分类号: TN92

UAV-relay Assisted Covert Communication with Finite Block-length

Funds: The National Natural Science Foundation of China (62001116, 62071234, 61971139, 61771244)
  • 摘要: 由于中长距离的无线隐蔽通信中信号发射功率较大,容易被监测者检测到,针对此问题该文提出无人机(UAV)中继协助的有限码长隐蔽传输方案。首先,根据无人机通信的信道模型,推导从发射机经过无人机中继到合法接收机的信噪比(SNR),得到隐蔽传输中断概率及吞吐量的表达式;然后,分析监测者的检测性能, 即KL(Kullback-Leibler)散度,并将其作为隐蔽通信的约束条件;最后,在此约束的条件下,联合优化发射机和中继的发射功率以及无人机的飞行高度,从而最大化隐蔽通信的吞吐量。仿真结果验证了系统的隐蔽性能,并且通过与缺少无人机协助的传统方案对比,揭示所提出的无人机中继隐蔽传输方案可以有效地降低监测者的KL散度。
  • 图  1  无人机-中继协助的无线隐蔽通信

    图  2  发射机Alice的发射功率与隐蔽吞吐量的变化关系

    图  3  发射机Alice的最大发射功率与最佳发射功率的变化关系

    图  4  合法接收机Bob的信噪比与无人机垂直高度的变化关系

    图  5  Alice-Willie距离与KL散度的变化关系

    表  1  关于最大隐蔽吞吐量及最优发射功率算法

     输入:初始化$ {D_{01}} $,$ \epsilon $,$ \delta $,$ {P}_{a}^{\mathrm{max}} $,$ {P}_{r}^{\mathrm{max}} $,$ {\gamma _w} $,$ {\gamma _b} $;给定传输速率$ R $;
     输出:$ {\eta ^*} $,$ P_a^{\text{*}} $,$ P_r^{\text{*}} $。
     (1)将优化问题式(17)转化为两个子优化问题式(25)、式(29);
      (a)根据式(16),求得$ {D_{01}} $关于$ {\gamma _w} $的1阶导数,将隐蔽性约束转化为一个等式,通过$ {D}_{01}({\gamma }_{w}^{‡})=2{\epsilon}^{2} $得到$ \gamma _w^\ddag $;
      (b)通过求$ {\gamma _w} $关于$ {P_a} $的偏导,利用链式法则,得到$ {D_{01}} $关于$ {P_a} $的偏导$ \dfrac{{\partial {D_{01}}}}{{\partial {P_a}}} = \dfrac{{{\text{d}}{D_{01}}}}{{{\text{d}}{\gamma _w}}}\dfrac{{\partial {\gamma _w}}}{{\partial {P_a}}} $;
      (c)通过求$ {\gamma _w} $关于$ {P_r} $的偏导,讨论${\bar \rho _{{\rm{ar}}} }\sigma _w^2$、${\bar \rho _{{\rm{aw}}} }\sigma _r^2$的关系,利用链式法则,得到$ {D_{01}} $关于$ {P_r} $的偏导$ \dfrac{{\partial {D_{01}}}}{{\partial {P_r}}} = \dfrac{{{\text{d}}{D_{01}}}}{{{\text{d}}{\gamma _w}}}\dfrac{{\partial {\gamma _w}}}{{\partial {P_r}}} $;
     (2)根据式(15),由$ {\gamma _w}(P_a^\ddag ) = \gamma _w^\ddag $,可以反解出$ P_a^\ddag $,通过给定$ {P_r} $,得到最优发射功率$ P_a^* = \min \{ P_a^\ddag ,P_a^{\max }\} $来求解优化问题式(25);
     (3)根据式(15),由$ {\gamma _w}(P_r^\ddag ) = \gamma _w^\ddag $,得到$ P_r^\ddag $;
      (a)当${\bar \rho _{{\rm{ar}}} }\sigma _w^2 > {\bar \rho _{{\rm{aw}}} }\sigma _r^2$时,得到最优发射功率$ P_r^* = \min \{ P_r^\ddag ,P_r^{\max }\} $求解优化问题式(29);
      (b)当${\bar \rho _{{\rm{ar}}} }\sigma _w^2 < {\bar \rho _{{\rm{aw}}} }\sigma _r^2$时,给定$ {P_r} = P_r^{\max } $,得到$ P_a^* = \min \{ P_a^\ddag ,P_a^{\max }\} $;
     (4)根据$ \eta = R(1 - \delta ) $,得到最大隐蔽吞吐量$ {\eta ^*} $;
      (a)根据式(11),利用${\rm{Q}}$函数,求得$ \delta $关于$ {\gamma _b} $的1阶导数;
      (b)由于$ \eta $与$ \delta $成反比,当$ \delta $取最小值时,得到最大的隐蔽吞吐量$ {\eta ^*} $。
    下载: 导出CSV
  • [1] YAN Shihao, ZHOU Xiangyun, HU Jinsong, et al. Low probability of detection communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2019, 26(5): 19–25. doi: 10.1109/MWC.001.1900057
    [2] GOECKEL D, BASH B, GUHA S, et al. Covert communications when the warden does not know the background noise power[J]. IEEE Communications Letters, 2016, 20(2): 236–239. doi: 10.1109/LCOMM.2015.2507594
    [3] ZHENG Tongxing, Wang Huiming, NG D W K, et al. Multi-antenna covert communications in random wireless networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1974–1987. doi: 10.1109/TWC.2019.2900915
    [4] SHAHZAD K, ZHOU Xiangyun, and YAN Shihao. Covert wireless communication in presence of a multi-antenna adversary and delay constraints[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 12432–12436. doi: 10.1109/TVT.2019.2948608
    [5] CHEN Xinying, SUN Wen, XING Chengwen, et al. Multi-antenna covert communication via full-duplex jamming against a warden with uncertain locations[J]. IEEE Transactions on Wireless Communication, 2021, 20(8): 5467–5480. doi: 10.1109/TWC.2021.3068096
    [6] HU Jinsong, YAN Shihao, ZHOU Xiangyun, et al. Covert communication achieved by a greedy relay in wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4766–4779. doi: 10.1109/TWC.2018.2831217
    [7] SHEIKHOLESLAMI A, GHADERI M, TOWSLEY D, et al. Multi-hop routing in covert wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3656–3669. doi: 10.1109/TWC.2018.2812881
    [8] JIANG Xu, CHEN Xinying, TANG Jie, et al. Covert communication in UAV-assisted air-ground networks[J]. IEEE Wireless Communications, 2021, 28(4): 190–197. doi: 10.1109/MWC.001.2000454
    [9] ZHOU Xiaobo, YAN Shihao, HU Jinsong, et al. Joint optimization of a UAV's trajectory and transmit power for covert communications[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4276–4290. doi: 10.1109/TSP.2019.2928949
    [10] JIANG Xu, YANG Zhutian, ZHAO Nan, et al. Resource allocation and trajectory optimization for UAV-enabled multi-user covert communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1989–1994. doi: 10.1109/TVT.2021.3053936
    [11] CHEN Xinying, CHANG Zheng, TANG Jie, et al. UAV-aided multi-antenna covert communication against multiple wardens[C]. The 2021 IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6.
    [12] CHEN Xinying, ZHANG Ning, TANG Jie, et al. UAV-aided covert communication with a multi-antenna jammer[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11619–11631. doi: 10.1109/TVT.2021.3112121
    [13] ZHOU Yi, YEOH P L, CHEN He, et al. Improving physical layer security via a UAV friendly jammer for unknown eavesdropper location[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 11280–11284. doi: 10.1109/TVT.2018.2868944
    [14] ALZENAD M, EL-KEYI A, and YANIKOMEROGLU H. 3-D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements[J]. IEEE Wireless Communications Letters, 2018, 7(1): 38–41. doi: 10.1109/LWC.2017.2752161
    [15] AL-HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/LWC.2014.2342736
    [16] KRIKIDIS I, THOMPSON J, MCLAUGHLIN S, et al. Amplify-and-forward with partial relay selection[J]. IEEE Communications Letters, 2008, 12(4): 235–237. doi: 10.1109/LCOMM.2008.071987
    [17] SHU Feng, XU Tingzhen, HU Jinsong, et al. Delay-constrained covert communications with a full-duplex receiver[J]. IEEE Wireless Communications Letters, 2019, 8(3): 813–816. doi: 10.1109/LWC.2019.2894617
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1248
  • HTML全文浏览量:  757
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-02-19
  • 录用日期:  2022-02-21
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回