高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散分数阶傅里叶变换的二维跳频通信系统及性能分析

宁晓燕 赵东旭 朱云飞 王震铎

宁晓燕, 赵东旭, 朱云飞, 王震铎. 基于离散分数阶傅里叶变换的二维跳频通信系统及性能分析[J]. 电子与信息学报, 2023, 45(2): 497-504. doi: 10.11999/JEIT211338
引用本文: 宁晓燕, 赵东旭, 朱云飞, 王震铎. 基于离散分数阶傅里叶变换的二维跳频通信系统及性能分析[J]. 电子与信息学报, 2023, 45(2): 497-504. doi: 10.11999/JEIT211338
NING Xiaoyan, ZHAO Dongxu, ZHU Yunfei, WANG Zhenduo. Two-dimensional Frequency Hopping Communication System and Performance Analysis Based on Discrete Fractional Fourier Transform[J]. Journal of Electronics & Information Technology, 2023, 45(2): 497-504. doi: 10.11999/JEIT211338
Citation: NING Xiaoyan, ZHAO Dongxu, ZHU Yunfei, WANG Zhenduo. Two-dimensional Frequency Hopping Communication System and Performance Analysis Based on Discrete Fractional Fourier Transform[J]. Journal of Electronics & Information Technology, 2023, 45(2): 497-504. doi: 10.11999/JEIT211338

基于离散分数阶傅里叶变换的二维跳频通信系统及性能分析

doi: 10.11999/JEIT211338
基金项目: 国家自然科学基金(62001138),黑龙江省自然科学基金(LH2021F009),中国博士后科学基金(2020M670885)
详细信息
    作者简介:

    宁晓燕:女,副教授,研究方向为认知通信与电子战

    赵东旭:男,硕士生,研究方向为认知通信与电子战

    朱云飞:男,硕士生,研究方向为变换域通信理论

    王震铎:男,副教授,研究方向为变换域通信理论

    通讯作者:

    王震铎 zhenduowang@hrbeu.edu.cn

  • 中图分类号: TN914.4

Two-dimensional Frequency Hopping Communication System and Performance Analysis Based on Discrete Fractional Fourier Transform

Funds: The National Natural Science Foundation of China (62001138), The Natural Science Foundation of Heilongjiang Province (LH2021F009), China Postdoctoral Science Foundation (2020M670885)
  • 摘要: 传统跳频(FH)通信技术具有抗干扰能力强、截获概率低等优点,广泛应用在军民领域。针对检测传统跳频的手段越来越成熟,信息易被截获的问题,该文借鉴正交频分复用(OFDM)系统框架,提出一种基于离散分数阶傅里叶变换(DFrFT)的时宽与起始频率跳变的分数阶跳频(FrFT-FH-VTFB)系统,设计了一种新的系统框架,实现信息隐蔽传输的同时,通过DFrFT的工程实现规避传统跳频工程应用中跳速受频率合成器限制的问题。该系统通过两组不同伪随机序列选取时宽与起始频率跳变的Chirp基信号,实现系统参数的多维变换,打破系统的周期特性。此外,建立了系统发送与接收两端数学模型,并在此基础上推导了系统在白噪声信道下的理论误码率。仿真结果表明,该文所设计的系统有较好的抗衰落性能;且功率谱淹没在噪声之下,时频域特征无明显周期特性,有较好的隐蔽性。
  • 图  1  FrFT-FH-VTFB系统原理框图

    图  2  时频域跳频图案

    图  3  归一化跳频图案

    图  4  不同条件下理论误码率与仿真结果对比

    图  5  AWGN信道系统性能对比

    图  6  衰落信道系统性能对比

    图  7  FrFT-FH-VTFB信号循环谱分析

    图  8  FH信号循环谱分析

    图  9  功率谱分析

    图  10  基带信号倒谱对比

    表  1  各系统参数设置

    系统基信号跳点时宽个数带宽个数平均时宽带宽积平均带宽(MHz)平均时宽(μs)
    FrFT-FH-VTFBChirp16812502012.5
    FrFT-FH-FTFBChirp16112502012.5
    FrFT-FH-FTVBChirp16182502012.5
    FH正弦信号16112012.5
    下载: 导出CSV
  • [1] ZENG Xiangyong, CAI Han, TANG Xiaohu, et al. A class of optimal frequency hopping sequences with new parameters[J]. IEEE Transactions on Information Theory, 2012, 58(7): 4899–4907. doi: 10.1109/tit.2012.2195771
    [2] QUAN Houde, ZHAO Huan, and CUI Peizhang. Anti-jamming frequency hopping system using multiple hopping patterns[J]. Wireless Personal Communications, 2015, 81(3): 1159–1176. doi: 10.1007/s11277-014-2177-1
    [3] JUNG J and LIM J. Chaotic standard map based frequency hopping OFDMA for low probability of intercept[J]. IEEE Communications Letters, 2011, 15(9): 1019–1021. doi: 10.1109/LCOMM.2011.071811.110966
    [4] 陈智, 李少谦, 董彬虹. 差分跳频通信系统抗部分频带噪声干扰的性能分析[J]. 电子与信息学报, 2007, 29(6): 1324–1327.

    CHEN Zhi, LI Shaoqian, and DONG Binhong. Performance analysis of differential frequency hopping system under partial band noise jamming[J]. Journal of Electronics &Information Technology, 2007, 29(6): 1324–1327.
    [5] LING Qi and LI Tongtong. Message-driven frequency hopping: Design and analysis[J]. IEEE Transactions on Wireless Communications, 2009, 8(4): 1773–1782. doi: 10.1109/TWC.2009.071255
    [6] LI Yang, YAO Fuqiang, and XU Ba. High order differential frequency hopping: Design and analysis[J]. Mathematical Problems in Engineering, 2015, 2015: 586080. doi: 10.1155/2015/586080
    [7] SHA Zhichao, LIU Zhangmeng, HUANG Zhitao, et al. Online hop timing detection and frequency estimation of multiple FH signals[J]. ETRI Journal, 2013, 35(5): 748–756. doi: 10.4218/etrij.13.0112.0787
    [8] LEE K G and OH S J. Detection of fast frequency-hopping signals using dirty template in the frequency domain[J]. IEEE Wireless Communications Letters, 2019, 8(1): 281–284. doi: 10.1109/LWC.2018.2870275
    [9] HU Chenlin, KIM J Y, NA S Y, et al. Compressive frequency hopping signal detection using spectral kurtosis and residual signals[J]. Wireless Personal Communications, 2017, 94(1): 53–67. doi: 10.1007/s11277-015-3156-x
    [10] NING Ben, GUAN Lei, and HUANG Haiyan. A novel frequency-hopping sequence for covert communication[J]. IEEE Access, 2017, 5: 20157–20163. doi: 10.1109/ACCESS.2017.2756100
    [11] LEE K G and OH S J. Detection of frequency-hopping signals with deep learning[J]. IEEE Communications Letters, 2020, 24(5): 1042–1046. doi: 10.1109/LCOMM.2020.2971216
    [12] 杨宇晓, 汪德鑫, 黄琪. 四维超混沌射频隐身跳频通信设计方法[J]. 宇航学报, 2020, 41(10): 1341–1349. doi: 10.3873/j.issn.1000-1328.2020.10.012

    YANG Yuxiao, WANG Dexin, and HUANG Qi. Design method of radio frequency stealth frequency hopping communications based on four-dimensional hyperchaotic system[J]. Journal of Astronautics, 2020, 41(10): 1341–1349. doi: 10.3873/j.issn.1000-1328.2020.10.012
    [13] TU Xingbin, XU Xiaomei, ZOU Zheguang, et al. Fractional Fourier domain hopped communication method based on chirp modulation for underwater acoustic channels[J]. Journal of Systems Engineering and Electronics, 2017, 28(3): 449–456. doi: 10.21629/JSEE.2017.03.05
    [14] 宁晓燕, 梁洪广, 王震铎, 等. 二维随机跳频系统性能分析[J]. 哈尔滨工程大学学报, 2022, 43(2): 274–281. doi: 10.11990/jheu.202012012

    NING Xiaoyan, LIANG Hongguang, WANG Zhenduo, et al. Performance analysis of a two-dimensional random frequency hopping system[J]. Journal of Harbin Engineering University, 2022, 43(2): 274–281. doi: 10.11990/jheu.202012012
    [15] 赵兴浩, 邓兵, 陶然. 分数阶傅里叶变换数值计算中的量纲归一化[J]. 北京理工大学学报, 2005, 25(4): 360–364. doi: 10.3969/j.issn.1001-0645.2005.04.019

    ZHAO Xinghao, DENG Bing, and TAO Ran. Dimensional normalization in the digital computation of the fractional fourier transform[J]. Transactions of Beijing Institute of Technology, 2005, 25(4): 360–364. doi: 10.3969/j.issn.1001-0645.2005.04.019
    [16] 史军, 沙学军, 张钦宇. 分数阶信号处理理论与方法[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017: 77–82.

    SHI Jun, SHA Xuejun, and ZHANG Qinyu. Fractional Order Signal Processing Theory and Methods[M]. Harbin: Harbin Institute of Technology Press, 2017: 77–82.
    [17] 刘建成, 刘忠, 王雪松, 等. 高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析[J]. 电子与信息学报, 2007, 29(10): 2337–2340. doi: 10.3724/SP.J.1146.2006.00314

    LIU Jiancheng, LIU Zhong, WANG Xuesong, et al. SNR analysis of LFM signal with gaussian white noise in fractional fourier transform domain[J]. Journal of Electronics &Information Technology, 2007, 29(10): 2337–2340. doi: 10.3724/SP.J.1146.2006.00314
    [18] 陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用[M]. 北京: 清华大学出版社, 2009: 349–350.

    TAO Ran, DENG Bing, and WANG Yue. Fractional Fourier Transform and its Applications[M]. Beijing: Tsinghua University Press, 2009: 349–350.
    [19] 樊昌信, 曹丽娜. 通信原理[M]. 7版. 北京: 国防工业出版社, 2012: 189–195.

    FAN Changxin and CAO Lina. Principles of Communications[M]. 7th ed. Beijing: National Defense Industry Press, 2012: 189–195.
    [20] 崔伟亮, 江桦, 李剑强, 等. 改进的循环谱估计快速算法与性能分析[J]. 电子与信息学报, 2011, 33(7): 1594–1599. doi: 10.3724/SP.J.1146.2010.01170

    CUI Weiliang, JIANG Hua, LI Jianqiang, et al. Improved fast cyclic spectral estimation algorithm and performance analysis[J]. Journal of Electronics &Information Technology, 2011, 33(7): 1594–1599. doi: 10.3724/SP.J.1146.2010.01170
    [21] ZHANG Wei, MALLIK R K, and LETAIEF K B. Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2009, 8(12): 5761–5766. doi: 10.1109/TWC.2009.12.081710
    [22] 齐佩汉, 司江勃, 李赞, 等. 基于功率谱分段对消频谱感知算法研究及性能分析[J]. 电子与信息学报, 2014, 36(4): 769–774. doi: 10.3724/SP.J.1146.2013.01091

    QI Peihan, SI Jiangbo, LI Zan, et al. Research and performance analysis of spectrum sensing algorithm based on the power spectral density segment cancellation[J]. Journal of Electronics &Information Technology, 2014, 36(4): 769–774. doi: 10.3724/SP.J.1146.2013.01091
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  117
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2022-06-20
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2023-02-07

目录

    /

    返回文章
    返回