高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迁移学习的三子网图像去雾方法

武明虎 丁畅 王娟 陈关海 刘子杉 郭力权

武明虎, 丁畅, 王娟, 陈关海, 刘子杉, 郭力权. 基于迁移学习的三子网图像去雾方法[J]. 电子与信息学报, 2022, 44(10): 3427-3434. doi: 10.11999/JEIT211324
引用本文: 武明虎, 丁畅, 王娟, 陈关海, 刘子杉, 郭力权. 基于迁移学习的三子网图像去雾方法[J]. 电子与信息学报, 2022, 44(10): 3427-3434. doi: 10.11999/JEIT211324
WU Minghu, DING Chang, WANG Juan, CHEN Guanhai, LIU Zishan, GUO Liquan. Three Subnets Image Dehazing Method Based on Transfer Learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3427-3434. doi: 10.11999/JEIT211324
Citation: WU Minghu, DING Chang, WANG Juan, CHEN Guanhai, LIU Zishan, GUO Liquan. Three Subnets Image Dehazing Method Based on Transfer Learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3427-3434. doi: 10.11999/JEIT211324

基于迁移学习的三子网图像去雾方法

doi: 10.11999/JEIT211324
基金项目: 国家自然科学基金(62006073),中央支持湖北省地方建设专项项目(2019ZYYD020)
详细信息
    作者简介:

    武明虎:男,教授,博士生导师,研究方向为智能电网

    丁畅:男,硕士生,研究方向为基于深度学习的图像去雾

    王娟:女,副教授,硕士生导师,研究方向为人工智能

    陈关海:男,硕士生,研究方向为基于深度学习的图像去雾

    刘子杉:女,硕士生,研究方向为基于深度学习的目标检测

    郭力权:男,硕士生,研究方向为基于深度学习的图像标注工作

    通讯作者:

    王娟 d8425@foxmail.com

  • 中图分类号: TN911.73; TP183

Three Subnets Image Dehazing Method Based on Transfer Learning

Funds: The National Natural Science Foundation of China (62006073), The Central Government Supported Special Local Construction Projects in Hubei Province (2019ZYYD020)
  • 摘要: 目前大部分图像去雾算法只在一种或几种均匀雾图数据集中有较好的表现,对于不同风格或非均匀雾图数据集去雾效果较差,同时算法在实际应用中会因模型泛化能力差导致模型场景受限。针对上述情况,该文提出一种基于迁移学习的卷积神经网络(CNN)用于解决去雾算法中非均匀雾图处理效果不佳和模型泛化能力差等问题。首先,该文使用ImageNet预训练的模型参数作为迁移学习模型的初始参数,以加速模型训练收敛速度。其次,主干网络模型由3个子网组成:残差特征子网络、局部特征提取子网络和整体特征提取子网络。3子网结合以保证模型可从整体和局部两个方面进行特征提取,在现实雾场景(浓雾、非均匀雾)中获得较好的去雾效果。该文在模型训练效率、去雾质量和雾图场景选择灵活性3个方面进行了研究和改进,为衡量模型性能,模型选择在去雾难度较大的非均匀雾图数据集NTIRE2020和NTIRE2021上进行定量与定性实验。实验结果证明3子网模型在图像主观和客观评价指标两个方面都取得了较好的效果。该文模型改善了算法泛化性能差和小数据集难以进行模型训练的问题,可将该文成果广泛应用于小规模数据集和多变场景图像的去雾工作中。
  • 图  1  3子网模型结构图

    图  2  3子网模型与主流去雾算法去雾效果对比图

    图  3  消融实验对比图

    图  4  消融实验去雾细节图

    表  1  3子网模型结果与主流去雾算法去雾图像数值比较表

    算法指标
    PSNR↑SSIM↑LPIPS↓运行时间 (s)↓
    DCP10.790.340.43213.45
    AOD-Net11.670.380.4713.39
    GCA-Net11.090.340.4024.48
    GDNet13.560.580.4733.02
    DMSHN12.050.310.3762.96
    MSBDN12.050.320.4785.14
    本文15.730.690.3263.47
    GT+∞10×
    下载: 导出CSV

    表  2  3子网模型结果与2子网去雾图像质量数值对比

    PSNRSSIMLPIPS模型参数
    全局特征提取子网13.97190.67500.3090.67M
    局部特征提取子网21.20360.78220.25647.37M
    本文算法21.73290.79230.26247.86M
    下载: 导出CSV
  • [1] HOWARD J N. Scattering phenomena. (Book reviews: Optics of the atmosphere. Scattering by molecules and particles)[J]. Science, 1977, 196(4294): 1084–1085. doi: 10.1126/science.196.4294.1084.b
    [2] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987, 39(3): 355–368. doi: 10.1016/S0734-189X(87)80186-X
    [3] OPPENHEIM A V. Speech analysis-synthesis system based on homomorphic filtering[J]. The Journal of the Acoustical Society of America, 1969, 45(2): 458–465. doi: 10.1121/1.1911395
    [4] ZHANG Dengsheng. Wavelet transform[M]. ZHANG Dengsheng. Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval. Cham: Springer, 2021.
    [5] LAND E H. The retinex[J]. American Scientist, 1964, 52(2): 247–264.
    [6] HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
    [7] TAN R T. Visibility in bad weather from a single image[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
    [8] 杨燕, 王志伟. 基于均值不等关系优化的自适应图像去雾算法[J]. 电子与信息学报, 2020, 42(3): 755–763. doi: 10.11999/JEIT190368

    YANG Yan and WANG Zhiwei. Adaptive image Dehazing algorithm based on mean unequal relation optimization[J]. Journal of Electronics &Information Technology, 2020, 42(3): 755–763. doi: 10.11999/JEIT190368
    [9] RAIKWAR S C and TAPASWI S. Lower bound on transmission using non-linear bounding function in single image Dehazingin[J]. IEEE Transactions on Image Processing, 2020, 29: 4832–4847. doi: 10.1109/TIP.2020.2975909
    [10] 潘金山. 基于深度学习的图像去模糊方法研究进展[J]. 计算机科学, 2021, 48(3): 9–13. doi: 10.11896/jsjkx.201200043

    PAN Jinshan. Research progress on deep learning-based image deblurring[J]. Computer Science, 2021, 48(3): 9–13. doi: 10.11896/jsjkx.201200043
    [11] CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187–5198. doi: 10.1109/TIP.2016.2598681
    [12] LI Boyi, PENG Xiulian, WANG Zhangyang, et al. AOD-Net: All-in-one dehazing network[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017.
    [13] ZHANG He and PATEL V M. Densely connected pyramid dehazing network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3194–3203.
    [14] LIU Xiaohong, MA Yongrui, SHI Zhihao, et al. GridDehazeNet: Attention-based multi-scale network for image dehazing[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 7313–7322.
    [15] DONG Hang, PAN Jinshan, XIANG Lei, et al. Multi-scale boosted dehazing network with dense feature fusion[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 2154–2164.
    [16] ZHAO Shiyu, ZHANG Lin, SHEN Ying, et al. RefineDNet: A weakly supervised refinement framework for single image dehazing[J]. IEEE Transactions on Image Processing, 2021, 30: 3391–3404. doi: 10.1109/TIP.2021.3060873
    [17] YU Yankun, LIU Huan, FU Minghan, et al. A two-branch neural network for non-homogeneous dehazing via ensemble learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Nashville, USA, 2021: 193–202.
    [18] SHAO Yuanjie, LI Lerenhan, REN Wenqi, et al. Domain adaptation for image dehazing[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 2808–2817.
    [19] DONG Yu, LIU Yihao, ZHANG He, et al. FD-GAN: Generative adversarial networks with fusion-discriminator for single image dehazing[C]. 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 10729–10736.
    [20] FU Minghan, LIU Huan, YU Yankun, et al. DW-GAN: A discrete wavelet transform GAN for NonHomogeneous dehazing[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Nashville, USA, 2021: 203–212.
    [21] LI Yuenan, LIU Yuhang, YAN Qixin, et al. Deep dehazing network with latent ensembling architecture and adversarial learning[J]. IEEE Transactions on Image Processing, 2021, 30: 1354–1368. doi: 10.1109/TIP.2020.3044208
    [22] 汤勇明, 戴荣时, 俞峰, 等. 视频图像去雾算法的自适应机制设计及FPGA加速实现[J]. 电子与信息学报, 2021, 43(9): 2542–2551. doi: 10.11999/JEIT200554

    TANG Yongming, DAI Rongshi, YU Feng, et al. Design of adaptive video image dehazing algorithm and FPGA accelerated implementation[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2542–2551. doi: 10.11999/JEIT200554
    [23] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255.
    [24] GAO Shanghua, CHENG Mingming, ZHAO Kai, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652–662. doi: 10.1109/TPAMI.2019.2938758
    [25] YU F and KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv: 1511.07122, 2015.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  664
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-01-19
  • 录用日期:  2022-01-24
  • 网络出版日期:  2022-02-19
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回