高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“祝融号”火星车次表层雷达干/水冰探测类比试验

刘海 李鉴辉 孟旭 周斌 方广有

刘海, 李鉴辉, 孟旭, 周斌, 方广有. “祝融号”火星车次表层雷达干/水冰探测类比试验[J]. 电子与信息学报, 2022, 44(4): 1336-1342. doi: 10.11999/JEIT211286
引用本文: 刘海, 李鉴辉, 孟旭, 周斌, 方广有. “祝融号”火星车次表层雷达干/水冰探测类比试验[J]. 电子与信息学报, 2022, 44(4): 1336-1342. doi: 10.11999/JEIT211286
LIU Hai, LI Jianhui, MENG Xu, ZHOU Bin, FANG Guangyou. An Analogical Experiment of Mars Rover Penetrating Radar Onboard Chinese “Zhurong” Martian Rover on Dry/Water Ice Detection[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1336-1342. doi: 10.11999/JEIT211286
Citation: LIU Hai, LI Jianhui, MENG Xu, ZHOU Bin, FANG Guangyou. An Analogical Experiment of Mars Rover Penetrating Radar Onboard Chinese “Zhurong” Martian Rover on Dry/Water Ice Detection[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1336-1342. doi: 10.11999/JEIT211286

“祝融号”火星车次表层雷达干/水冰探测类比试验

doi: 10.11999/JEIT211286
基金项目: 国家自然科学基金(41874120, 51978182, 5202010500),广州市科技计划项目(20210201444),深圳市科技计划(KQTD20180412181337494)
详细信息
    作者简介:

    刘海:男,1986年生,博士,教授,博士生导师,研究方向为雷达遥感与深空探测、探地雷达、结构无损检测

    李鉴辉:男,1997年生,硕士生,研究方向为探地雷达数据处理及成像算法

    孟旭:男,1989年生,博士,讲师,主要研究方向为探地雷达无损检测、数字信号处理、探月雷达数据反演等

    周斌:男,1977年生,博士,研究员,主要研究方向为超宽带雷达系统设计、应用及数据处理等

    方广有:男,1963年生,博士,研究员,主要研究方向为超宽带雷达成像理论与技术、地球物理电磁勘探技术、月球/火星探测雷达技术等

    通讯作者:

    周斌 zhb@mail.ie.ac.cn

  • 中图分类号: TN958

An Analogical Experiment of Mars Rover Penetrating Radar Onboard Chinese “Zhurong” Martian Rover on Dry/Water Ice Detection

Funds: The National Natural Science Foundation of China (41874120, 51978182, 5202010500), Funding by Science and Technology Projects in Guangzhou (20210201444), Shenzhen Science and Technology Program (KQTD20180412181337494)
  • 摘要: 2021年5月22日,我国第1辆火星探测车“祝融号”开始在火星表面执行探测任务,其搭载的次表层探测雷达(RoPeR)包含高、低频两个通道,有望在不同的分辨率上揭示着陆区火星次表层结构。其中高频通道采用一对工作带宽为0.45~2.15 GHz的Vivaldi天线阵列,可以采集4种不同天线组合(HH, HV, VH和VV)的全极化雷达回波数据,用于调查着陆区火壤浅层结构并寻找次表层中可能存在的干/水冰。该文通过室内类比试验研究了RoPeR探测和区分干冰与水冰的能力,试验结果表明,干冰和水冰目标具有不同的极化散射特性,并利用$ H - \alpha $极化分解方法初步区分了干冰和水冰。
  • 图  1  RoPeR天线布置与结构图

    图  2  干冰/水冰探测试验布置图

    图  3  干冰/水冰目标及其尺寸

    图  4  干冰不同极化通道的2维雷达剖面

    图  5  水冰不同极化通道的2维雷达剖面

    图  6  2维$ H - \alpha $平面图

    图  7  干冰样品反射信号的极化分解结果

    图  8  水冰样品反射信号的极化分解结果

    图  9  干/水冰细微结构图

  • [1] PERMINOV V G. The Difficult Road to Mars: A Brief History of Mars Exploration in the Soviet Union[M]. Washington: National Aeronautics and Space Administration Headquarters, 1999: 381–390.
    [2] JAKOSKY B M and MELLON M T. Special issue: Water on Mars[J]. Physics Today, 2004, 57(4): 71–76. doi: 10.1063/1.1752425
    [3] WATTERS T R, CAMPBELL B, CARTER L, et al. Radar sounding of the medusae fossae formation Mars: Equatorial ice or dry, low-density deposits?[J]. Science, 2007, 318(5853): 1125–1128. doi: 10.1126/science.1148112
    [4] BYRNE S. The polar deposits of Mars[J]. Annual Review of Earth and Planetary Sciences, 2009, 37: 535–560. doi: 10.1146/annurev.earth.031208.100101
    [5] PHILLIPS R J, ZUBER M T, SMREKAR S E, et al. Mars North Polar deposits: Stratigraphy, age, and geodynamical response[J]. Science, 2008, 320(5880): 1182–1185. doi: 10.1126/science.1157546
    [6] CASTALDO L, MÈGE D, GURGUREWICZ J, et al. Global permittivity mapping of the Martian surface from SHARAD[J]. Earth and Planetary Science Letters, 2017, 462: 55–65. doi: 10.1016/j.jpgl.2017.01.012
    [7] LIU Hai, LONG Zhijun, HAN Feng, et al. Frequency-domain reverse-time migration of ground penetrating radar based on layered medium Green’s functions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2957–2965. doi: 10.1109/JSTARS.2018.2841361
    [8] 刘海, 岳云鹏, 韩峰, 等. 嫦娥五号探月雷达的数据处理方法研究[J]. 雷达科学与技术, 2021, 19(1): 14–22. doi: 10.3969/j.issn.1672-2337.2021.01.003

    LIU Hai, YUE Yunpeng, HAN Feng, et al. Data processing methods for Chang'E-5 lunar penetrating radar[J]. Radar Science and Technology, 2021, 19(1): 14–22. doi: 10.3969/j.issn.1672-2337.2021.01.003
    [9] LU W, JI Y C, ZHOU B, et al. Design of an array antenna system for Chang’E-5 LRPR[C]. Proceedings of the 2016 16th International Conference on Ground Penetrating Radar, Hong Kong, China, 2016: 1–4.
    [10] ZHANG Jinhai, YANG Wei, HU Sen, et al. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(17): 5342–5347. doi: 10.1073/pnas.1503082112
    [11] XIAO Long, ZHU Peimin, FANG Guangyou, et al. A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission[J]. Science, 2015, 347(6227): 1226–1229. doi: 10.1126/science.1259866
    [12] China National Space Administration. Chinese Mars mission sends photos of the Red Planet[EB/OL]. http://www.cnsa.gov.cn/english/n6465652/n6465653/c6813041/content.html, 2022.
    [13] ZHOU Bin, SHEN Shaoxiang, LU Wei, et al. The Mars rover subsurface penetrating radar onboard China’s Mars 2020 mission[J]. Earth and Planetary Physics, 2020, 4(4): 345–354. doi: 10.26464/epp2020054
    [14] ZOU Yongliao, ZHU Yan, BAI Yunfei, et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission[J]. Advances in Space Research, 2021, 67(2): 812–823. doi: 10.1016/j.asr.2020.11.005
    [15] UTREJA L R. Lunar environment[J]. Applied Mechanics Reviews, 1993, 46(6): 278–284. doi: 10.1115/1.3120356
    [16] ZUBRIN R and WAGNER R. The Case for Mars: The Plan to Settle the Red Planet and Why We Must[M]. New York: The Free Press, 2011: 32–32.
    [17] 苏兆忠, 孔旭. 微波器件低气压放电的机理分析与防护方法[J]. 电子质量, 2019(5): 74–76. doi: 10.3969/j.issn.1003-0107.2019.05.019

    SU Zhaozhong and KONG Xu. Low pressure discharge mechanism and corresponding protection method of the microwave device[J]. Electronics Quality, 2019(5): 74–76. doi: 10.3969/j.issn.1003-0107.2019.05.019
    [18] CHINNERY H E, HAGERMANN A, KAUFMANN E, et al. The penetration of solar radiation into carbon dioxide ice[J]. Journal of Geophysical Research:Planets, 2018, 123(4): 864–871. doi: 10.1002/2018JE005539
    [19] KAUFMANN E and HAGERMANN A. Experimental investigation of insolation-driven dust ejection from Mars’ CO2 ice caps[J]. Icarus, 2017, 282: 118–126. doi: 10.1016/j.icarus.2016.09.039
    [20] LIU Hai and SATO M. Determination of the phase center position and delay of a Vivaldi antenna[J]. IEICE Electronics Express, 2013, 10(21): 20130573. doi: 10.1587/elex.10.20130573
    [21] FENG Xuan, ZOU Lilong, LU Qi, et al. Calibration with high-order terms of polarimetric GPR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 717–722. doi: 10.1109/JSTARS.2012.2191143
    [22] CHEN Siwei, LI Yongzhen, WANG Xuesong, et al. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(4): 79–89. doi: 10.1109/MSP.2014.2312099
    [23] FENG Xuan, YU Yue, LIU Cai, et al. Combination of h-alpha decomposition and migration for enhancing subsurface target classification of GPR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4852–4861. doi: 10.1109/TGRS.2015.2411572
    [24] CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
    [25] LIU Hai, LONG Zhijun, TIAN Bo, et al. Two-dimensional reverse-time migration applied to GPR with a 3-D-to-2-D data conversion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(10): 4313–4320. doi: 10.1109/JSTARS.2017.2734098
    [26] CHINNERY H E, HAGERMANN A, KAUFMANN E, et al. The penetration of solar radiation into granular carbon dioxide and water ices of varying grain sizes on Mars[J]. Journal of Geophysical Research:Planets, 2020, 125(4): e2019JE006097. doi: 10.1029/2019JE006097
    [27] CHINNERY H E, HAGERMANN A, KAUFMANN E, et al. The penetration of solar radiation into water and carbon dioxide snow, with reference to Mars[J]. Journal of Geophysical Research:Planets, 2019, 124(2): 337–348. doi: 10.1029/2018JE005771
    [28] 黄文峰, 张丽敏, 李志军, 等. 天然和人造淡水冰内部结构特征的对比研究[C]. 寒区水科学及国际河流研究系列丛书2·寒区水循环及冰工程研究——第2届“寒区水资源及其可持续利用”学术研讨会论文集, 黑河, 2009.

    HUANG Wenfeng, ZHANG Limin, LI Zhijun, et al. Study on inner structure of natural and artificial fresh ice[C]. Proceedings of the 2nd Symposium on “Water Resources and Their Sustainable Utilization in Cold Regions”, Heihe, China, 2009.
    [29] ILIESCU D, BAKER I, and CULLEN D. Preliminary microstructural and microchemical observations on pond and river accretion ice[J]. Cold Regions Science and Technology, 2002, 35(2): 81–99. doi: 10.1016/S0165-232X(02)00042-3
  • 加载中
图(9)
计量
  • 文章访问数:  622
  • HTML全文浏览量:  300
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-30
  • 修回日期:  2022-03-11
  • 录用日期:  2022-03-15
  • 网络出版日期:  2022-03-16
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回