高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矢量近似消息传递的智能反射面辅助毫米波信道估计

王丹 梁家敏 梅志强 刘金枝

王丹, 梁家敏, 梅志强, 刘金枝. 基于矢量近似消息传递的智能反射面辅助毫米波信道估计[J]. 电子与信息学报, 2022, 44(7): 2400-2406. doi: 10.11999/JEIT211271
引用本文: 王丹, 梁家敏, 梅志强, 刘金枝. 基于矢量近似消息传递的智能反射面辅助毫米波信道估计[J]. 电子与信息学报, 2022, 44(7): 2400-2406. doi: 10.11999/JEIT211271
WANG Dan, LIANG Jiamin, MEI Zhiqiang, LIU Jinzhi. Millimeter-wave Channel Estimation with Intelligent Reflecting Surface Assisted Based on Vector Approximate Message Passing[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2400-2406. doi: 10.11999/JEIT211271
Citation: WANG Dan, LIANG Jiamin, MEI Zhiqiang, LIU Jinzhi. Millimeter-wave Channel Estimation with Intelligent Reflecting Surface Assisted Based on Vector Approximate Message Passing[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2400-2406. doi: 10.11999/JEIT211271

基于矢量近似消息传递的智能反射面辅助毫米波信道估计

doi: 10.11999/JEIT211271
基金项目: 国家科技重大专项(2017ZX03001021),重庆市自然科学基金(cstc2021jcyj-msxmX0454)
详细信息
    作者简介:

    王丹:女,1982年生,正高级工程师,研究方向为5G物理层协议、数字信号处理器软件

    梁家敏:女,1997年生,硕士生,研究方向为5G物理层协议与算法、6G智能反射面

    梅志强:男,1997年生,硕士生,研究方向为5G物理层协议与算法

    刘金枝:女,1997年生,硕士生,研究方向为5G物理层协议与算法、6G智能反射面

    通讯作者:

    梁家敏 1418155208@qq.com

  • 中图分类号: TN929.5

Millimeter-wave Channel Estimation with Intelligent Reflecting Surface Assisted Based on Vector Approximate Message Passing

Funds: The National Science and Technology Major Project (2017ZX03001021), Chongqing Natural Science Foundation Project (cstc2021jcyj-msxmX0454)
  • 摘要: 毫米波属于一种典型的视距传输方式,其受大气吸收影响严重。针对毫米波的非视距传播受限,该文通过智能反射面(IRS)辅助毫米波通信,提出结合Khatri-Rao积的矢量近似消息传递(KR-VAMP)算法来提高毫米波通信系统的信道估计质量。该算法基于Khatri-Rao积将级联信道问题转换为稀疏信号恢复问题,并结合VAMP的矢量和迭代阈值算法的优势,使得整个IRS辅助毫米波系统在减少训练迭代次数的同时,降低了整个系统的信道估计误差。最后通过仿真结果对比,分析了各变量对信道估计的均方误差(MMSE)的影响,以及MMSE随着迭代次数的收敛情况,验证了此算法对比其他近似消息传递(AMP)算法具有更好的性能。
  • 图  1  IRS辅助通信示意图

    图  2  基站、IRS与用户之间的位置关系图

    图  3  因子转换图

    图  4  基站、IRS和用户的位置示意图

    图  5  不同迭代初始值条件下的均方误差

    图  6  不同噪声功率条件下的均方误差

    图  7  算法不同迭代次数下的均方误差

  • [1] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
    [2] BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7: 116753–116773. doi: 10.1109/ACCESS.2019.2935192
    [3] YOU Changsheng, ZHENG Beixiong, and ZHANG Rui. Intelligent reflecting surface with discrete phase shifts: Channel estimation and passive beamforming[C]. The ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
    [4] CHEN Jie, LIANG Yingchang, CHENG H V, et al. Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[EB/OL]. https://arxiv.org/abs/1912.03619, 2019.
    [5] HE Zhenqing and YUAN Xiaojun. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9(2): 210–214. doi: 10.1109/LWC.2019.2948632
    [6] MIRZA J and ALI B. Channel estimation method and phase shift design for reconfigurable intelligent surface assisted MIMO networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 441–451. doi: 10.1109/TCCN.2021.3072895
    [7] WANG Peilan, FANG Jun, and LI Hongbin. Joint beamforming for intelligent reflecting surface-assisted millimeter wave communications[EB/OL]. https://arxiv.org/abs/1910.08541v1, 2019.
    [8] TSAI C R, LIU Y H, and WU A Y. Efficient compressive channel estimation for millimeter-wave large-scale antenna systems[J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2414–2428. doi: 10.1109/TSP.2018.2811742
    [9] TAHA A, ALRABEIAH M, and ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning[J]. IEEE Access, 2021, 9: 44304–44321. doi: 10.1109/ACCESS.2021.3064073
    [10] LIU Hang, YUAN Xiaojun, and ZHANG Y J A. Message-passing based channel estimation for reconfigurable intelligent surface assisted MIMO[C]. 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, USA, 2020: 2983–2988.
    [11] NADEEM Q U A, ALWAZANI H, KAMMOUN A, et al. Intelligent reflecting surface-assisted multi-user MISO communication: Channel estimation and beamforming design[J]. IEEE Open Journal of the Communications Society, 2020, 1: 661–680. doi: 10.1109/OJCOMS.2020.2992791
    [12] ZHANG Jinming, QI Chenhao, LI Ping, et al. Channel estimation for reconfigurable intelligent surface aided massive MIMO system[C]. The 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, USA, 2020.
    [13] TAN Xin, SUN Zhi, KOUTSONIKOLAS D, et al. Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays[C]. The IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, Honolulu, USA, 2018: 270–278.
    [14] DE ARAÚJO G T and DE ALMEIDA A L F. PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system[C]. The 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5.
    [15] WANG Peilan, FANG Jun, DUAN Huiping, et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020, 27: 905–909. doi: 10.1109/LSP.2020.2998357
    [16] BARON D, RUSH C, and YAPICI Y. mmWave channel estimation via approximate message passing with side information[C]. The 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, USA, 2020.
    [17] ABEYWICKRAMA S, ZHANG Rui, WU Qingqing, et al. Intelligent reflecting surface: Practical phase shift model and beamforming optimization[J]. IEEE Transactions on Communications, 2020, 68(9): 5849–5863. doi: 10.1109/TCOMM.2020.3001125
    [18] 王丹, 梁家敏, 刘金枝, 等. 6G可重构智能表面的相移模型设计[J]. 计算机应用, 2021, 41(9): 2694–2698. doi: 10.11772/j.issn.1001-9081.2020111836

    WANG Dan, LIANG Jiamin, LIU Jinzhi, et al. Phase shift model design for 6G reconfigurable intelligent surface[J]. Journal of Computer Applications, 2021, 41(9): 2694–2698. doi: 10.11772/j.issn.1001-9081.2020111836
    [19] RANGAN S, SCHNITER P, and FLETCHER A K. Vector approximate message passing[C]. 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 2017: 1588–1592.
  • 加载中
图(7)
计量
  • 文章访问数:  853
  • HTML全文浏览量:  489
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-03-25
  • 网络出版日期:  2022-04-02
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回