[1] |
SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
|
[2] |
BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7: 116753–116773. doi: 10.1109/ACCESS.2019.2935192
|
[3] |
YOU Changsheng, ZHENG Beixiong, and ZHANG Rui. Intelligent reflecting surface with discrete phase shifts: Channel estimation and passive beamforming[C]. The ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
|
[4] |
CHEN Jie, LIANG Yingchang, CHENG H V, et al. Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[EB/OL]. https://arxiv.org/abs/1912.03619, 2019.
|
[5] |
HE Zhenqing and YUAN Xiaojun. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9(2): 210–214. doi: 10.1109/LWC.2019.2948632
|
[6] |
MIRZA J and ALI B. Channel estimation method and phase shift design for reconfigurable intelligent surface assisted MIMO networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 441–451. doi: 10.1109/TCCN.2021.3072895
|
[7] |
WANG Peilan, FANG Jun, and LI Hongbin. Joint beamforming for intelligent reflecting surface-assisted millimeter wave communications[EB/OL]. https://arxiv.org/abs/1910.08541v1, 2019.
|
[8] |
TSAI C R, LIU Y H, and WU A Y. Efficient compressive channel estimation for millimeter-wave large-scale antenna systems[J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2414–2428. doi: 10.1109/TSP.2018.2811742
|
[9] |
TAHA A, ALRABEIAH M, and ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning[J]. IEEE Access, 2021, 9: 44304–44321. doi: 10.1109/ACCESS.2021.3064073
|
[10] |
LIU Hang, YUAN Xiaojun, and ZHANG Y J A. Message-passing based channel estimation for reconfigurable intelligent surface assisted MIMO[C]. 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, USA, 2020: 2983–2988.
|
[11] |
NADEEM Q U A, ALWAZANI H, KAMMOUN A, et al. Intelligent reflecting surface-assisted multi-user MISO communication: Channel estimation and beamforming design[J]. IEEE Open Journal of the Communications Society, 2020, 1: 661–680. doi: 10.1109/OJCOMS.2020.2992791
|
[12] |
ZHANG Jinming, QI Chenhao, LI Ping, et al. Channel estimation for reconfigurable intelligent surface aided massive MIMO system[C]. The 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, USA, 2020.
|
[13] |
TAN Xin, SUN Zhi, KOUTSONIKOLAS D, et al. Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays[C]. The IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, Honolulu, USA, 2018: 270–278.
|
[14] |
DE ARAÚJO G T and DE ALMEIDA A L F. PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system[C]. The 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5.
|
[15] |
WANG Peilan, FANG Jun, DUAN Huiping, et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020, 27: 905–909. doi: 10.1109/LSP.2020.2998357
|
[16] |
BARON D, RUSH C, and YAPICI Y. mmWave channel estimation via approximate message passing with side information[C]. The 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, USA, 2020.
|
[17] |
ABEYWICKRAMA S, ZHANG Rui, WU Qingqing, et al. Intelligent reflecting surface: Practical phase shift model and beamforming optimization[J]. IEEE Transactions on Communications, 2020, 68(9): 5849–5863. doi: 10.1109/TCOMM.2020.3001125
|
[18] |
王丹, 梁家敏, 刘金枝, 等. 6G可重构智能表面的相移模型设计[J]. 计算机应用, 2021, 41(9): 2694–2698. doi: 10.11772/j.issn.1001-9081.2020111836WANG Dan, LIANG Jiamin, LIU Jinzhi, et al. Phase shift model design for 6G reconfigurable intelligent surface[J]. Journal of Computer Applications, 2021, 41(9): 2694–2698. doi: 10.11772/j.issn.1001-9081.2020111836
|
[19] |
RANGAN S, SCHNITER P, and FLETCHER A K. Vector approximate message passing[C]. 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 2017: 1588–1592.
|