Service Function Chain Anomaly Detection Based on Distributed Generative Adversarial Network in Network Slicing Scenario
-
摘要: 针对网络切片场景中,由于软硬件异常而导致服务功能链(SFC)异常的问题,该文提出一种基于分布式生成对抗网络(GAN)的时间序列异常检测模型(DTSGAN)。首先,为学习SFC中正常数据的特征,提出分布式GAN架构,对SFC中包含的多个虚拟网络功能(VNF)进行异常检测;其次,针对时间序列数据构建一种基于滑动窗口数据特征提取器,通过提取数据的两种衍生特性和8种统计特征以挖掘深层次特征,得到特征序列;最后,为学习并重构数据特征,提出时间卷积网络(TCN)与自动编码器(AE)构建的3层编解码器作为分布式生成器,生成器通过异常得分函数衡量重构数据与输入数据的差异以检测VNF的状态,进而完成SFC的异常检测。在数据集Clearwater上采用准确率、精确率、召回率和F1分数这4个性能指标验证了该文所提模型的有效性和稳定性。Abstract: For the problem of Service Function Chain (SFC) anomalies due to hardware and software anomalies in network slicing scenarios, a Distributed Generative Adversarial Network (GAN)-based Time Series anomaly detection model (DTSGAN) is proposed. First, to learn the characteristics of normal data in SFC, a distributed GAN architecture is proposed for anomaly detection of multiple Virtual Network Functions (VNFs) contained in SFC. Then, a feature extractor based on sliding window data is constructed for time series data, and the feature sequence is obtained by extracting two derived characteristics and eight statistical features of the data to mine the deep-level features. Finally, in order to learn and reconstruct data characteristics, a three-layer codec constructed by Time Convolutional Network (TCN) and Auto-Encoder (AE) is proposed as a distributed generator, which measures the difference between reconstructed data and input data by anomaly score function to detect the state of VNF, and then completes the anomaly detection of SFC. The effectiveness and stability of the proposed model are verified on the dataset Clearwater using four evaluation metrics: accuracy, precision, recall and F1 score.
-
算法1 DTSGAN在MANO中的训练 输入:数据流(Fi,zi),(Fi,ˆzi) 输出:误差项B1i,B2i,B3i,鉴别器输出D(ˆFi,ˆzi) (1) function MANODIS((Fi,zi),(ˆFi,ˆzi),d,k) // 鉴别器D训
练函数(2) for j∈[1,b] do // 鉴别器D训练轮数为b (3) for i∈[1,k] do // EMi的个数为k (4) 从EMi中获得数据流(Fi,zi),(ˆFi,ˆzi) (5) 计算第i个梯度Δwdi (6) if j=d do (7) 分别根据式(8)—式(10)计算G1i,G2i, G3i的误差项B1i,
B2i, B3i(8) 将鉴别器结果B1i,B2i,B3i,D(ˆFi,ˆzi)发送至相应的
EMi(9) end if (10) end for (11) 对k个梯度求平均值得到Δwd (12) 使用Δwd更新鉴别器D参数wd (13) end for (14) end function 算法2 DTSGAN在EMi中的训练 输入:特征序列Fi,鉴别器反馈B1i,B2i,B3i 输出:数据流(Fi,zi),(ˆFi,ˆzi) (1) function EMGEN(Fi,B1i,B2i,B3i,L) // 生成器Gi训练函数 (2) 编码器G1i提取潜在表示zi (3) 解码器G2i重构特征序列ˆFi (4) 编码器G3i重构潜在表示ˆzi (5) 将数据流(Fi,zi),(ˆFi,ˆzi)发送至鉴别器D (6) if L≠1 do // 训练轮数为L (7) 从鉴别器D获取误差项B1i,B2i,B3i (8) 分别根据式(15)—式(17)计算计算G1i,G2i, G3i的梯度
Δw1,li, Δw2,li, Δw3,li(9) 使用Δw1,li,Δw2,li, Δw3,li更新生成器Gi参数
w1i,w2i,w3i(10) end if (11) end function 表 1 滑动窗口尺寸设置
1 2 3 4 5 6 7 衍生特性滑动窗口尺寸s 2 6 8 8 10 14 14 统计特征滑动窗口尺寸f 2 2 4 6 8 10 12 -
[1] ESCOLAR A M, CALERO J, and WANG Q. SliceNetVSwitch: Definition, design and implementation of 5G multi-tenant network slicing in software data paths[J]. IEEE Transactions on Network and Service Management, 2020, 17(4): 2212–2225. doi: 10.1109/TNSM.2020.3029653 [2] CHERRARED S, IMADALI S, FABRE E, et al. A survey of fault management in network virtualization environments: Challenges and solutions[J]. IEEE Transactions on Network and Service Management, 2019, 16(4): 1537–1551. doi: 10.1109/TNSM.2019.2948420 [3] SAUVANAUD C, LAZRI K, KAANICHE M, et al. Anomaly detection and root cause localization in virtual network functions[C]. 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), Ottawa, Canada, 2016: 196–206. [4] COTRONEO D, NATELLA R, and ROSIELLO S. A fault correlation approach to detect performance anomalies in virtual network function chains[C]. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), Toulouse, France, 2017: 90–100. [5] BLAISE A, WONG S, and AGHVAMI A H. Virtual network function service chaining anomaly detection[C]. 2018 25th International Conference on Telecommunications (ICT), Saint-Malo, France, 2018: 411–415. [6] BASHAR M A and NAYAK R. TAnoGAN: Time series anomaly detection with generative adversarial networks[C]. 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 2020: 1778–1785. [7] DONG Weishan, YUAN Ting, YANG Kai, et al. Autoencoder regularized network for driving style representation learning[C]. Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 1603–1609. [8] KINGMA D P and BA L J. Adam: A method for stochastic optimization[C]. International Conference on Learning Representations 2015, San Diego, USA, 2015. [9] JIANG Wenqian, HONG Yang, ZHOU Beitong, et al. A GAN-based anomaly detection approach for imbalanced industrial time series[J]. IEEE Access, 2019, 7: 143608–143619. doi: 10.1109/ACCESS.2019.2944689 [10] BENDRISS J. Cognitive management of SLA in software-based networks[D]. [Ph. D. dissertation], Institut National des Télécommunications, 2018. [11] DONAHUE J, KRÄHENBÜHL P, and DARRELL T. Adversarial feature learning[J]. arXiv: 1605.09782, 2016. [12] RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv: 1511.06434, 2015. 期刊类型引用(3)
1. 张作宇,廖守亿,孙大为,张合新,王仕成. 稀疏差异先验信息支持的高光谱图像稀疏解混算法. 测绘学报. 2020(08): 1032-1041 . 百度学术
2. 袁博. 基于混合像元空间与谱间相关性模型的NMF线性盲解混. 测绘学报. 2019(09): 1151-1160 . 百度学术
3. 袁博. 空间与谱间相关性分析的NMF高光谱解混. 遥感学报. 2018(02): 265-276 . 百度学术
其他类型引用(4)
-