高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空地协同场景下通信干扰智能识别方法

刘明骞 高晓腾 李明 朱守中

刘明骞, 高晓腾, 李明, 朱守中. 空地协同场景下通信干扰智能识别方法[J]. 电子与信息学报, 2022, 44(3): 825-834. doi: 10.11999/JEIT211260
引用本文: 刘明骞, 高晓腾, 李明, 朱守中. 空地协同场景下通信干扰智能识别方法[J]. 电子与信息学报, 2022, 44(3): 825-834. doi: 10.11999/JEIT211260
LIU Mingqian, GAO Xiaoteng, LI Ming, ZHU Shouzhong. Communication Interference Intelligent Recognition in the Air-to-ground Collaboration Scenario[J]. Journal of Electronics & Information Technology, 2022, 44(3): 825-834. doi: 10.11999/JEIT211260
Citation: LIU Mingqian, GAO Xiaoteng, LI Ming, ZHU Shouzhong. Communication Interference Intelligent Recognition in the Air-to-ground Collaboration Scenario[J]. Journal of Electronics & Information Technology, 2022, 44(3): 825-834. doi: 10.11999/JEIT211260

空地协同场景下通信干扰智能识别方法

doi: 10.11999/JEIT211260
基金项目: 国家自然科学基金(62071364),航空科学基金(2020Z073081001),中央高校基本科研业务费专项资金(JB210104),高等学校学科创新引智计划(B08038)
详细信息
    作者简介:

    刘明骞:男,1982年生,博士,副教授,博士生导师,研究方向为电磁信号智能处理和电磁信号大数据处理

    高晓腾:男,1994年生,硕士,助理工程师,研究方向为信号处理

    李明:男,1984年生,博士,正高级工程师,研究方向为电子侦察和智能化电子对抗

    朱守中:男,1982年生,博士,高级工程师,研究方向为航天电子侦察和要地低空防护

    通讯作者:

    刘明骞 mqliu@mail.xidian.edu.cn

  • 中图分类号: TN974

Communication Interference Intelligent Recognition in the Air-to-ground Collaboration Scenario

Funds: The National Natural Science Foundation of China (62071364), The Aeronautical Science Foundation of China (2020Z073081001), The Fundamental Research Funds for the Central Universities (JB210104), The 111 Project (B08038)
  • 摘要: 针对现有通信干扰智能识别方法在小样本条件下识别精度低、网络模型欠拟合的问题,并形成通信干扰识别的空中与地面布设能力,该文提出一种空地协同场景下基于孪生网络的通信干扰智能识别方法。首先在空中无人机与地面设备之间构建空地协同的通信干扰认知架构,并通过提取所接收的通信干扰信号的时频图、分数阶傅里叶变换和星座图,对通信干扰信号进行智能表征,以作为网络的输入。然后搭建基于密集连接网络的网络结构,并设计双输入权值共享的孪生网络。最后,利用随机样本对孪生网络进行训练,并通过孪生单边网络构建基准通信干扰类型特征库进而实现通信干扰的智能识别。该方法通过度量两个样本之间的特征距离来判断样本的相似性,并通过相似度度量扩大了训练样本数量并训练了孪生网络模型。仿真结果表明,所提方法不但在较小数据集的条件下可有效地实现通信干扰的智能识别,而且相比现有的智能识别方法,所提方法的识别性能显著提升。
  • 图  1  空地协同的通信干扰认知系统模型

    图  2  通信干扰信号的时频图

    图  3  通信干扰信号的FRFT图

    图  4  通信干扰信号的星座图

    图  5  基于DenseNet的子网络结构

    图  6  基于孪生网络的通信干扰识别网络

    图  7  基于孪生网络的通信干扰识别性能

    图  8  不同频率偏移下通信干扰的识别性能

    图  9  不同Rayleigh衰落信道下子网络识别性能图

    图  10  不同样本数量下不同识别方法的性能对比

    表  1  不同通信干扰识别方法的性能对比(%)

    不同的识别方法信噪比(dB)
    –404812
    本文方法96.0097.7198.4398.1499.14
    文献[6]方法83.5486.7495.4695.8496.30
    文献[8]方法84.0097.1098.4398.1499.14
    下载: 导出CSV
  • [1] JOHNSTON J, LI Yinchuan, LOPS M, et al. ADMM-net for communication interference removal in stepped-frequency radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 2818–2832. doi: 10.1109/TSP.2021.3076900
    [2] KE Chenxi, LI Jingwen, CHENG Wei, et al. An intelligent anti-interference communication method based on game learning[C]. The 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2021: 182–186.
    [3] 黄国策, 王桂胜, 任清华, 等. 基于Hilbert信号空间的未知干扰自适应识别方法[J]. 电子与信息学报, 2019, 41(8): 1916–1923. doi: 10.11999/JEIT180891

    HUANG Guoce, WANG Guisheng, REN Qinghua, et al. Adaptive recognition method for unknown interference based on Hilbert signal space[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1916–1923. doi: 10.11999/JEIT180891
    [4] 冯熳, 王梓楠. 基于奇异值分解与神经网络的干扰识别[J]. 电子与信息学报, 2020, 42(11): 2573–2578. doi: 10.11999/JEIT190228

    FENG Man and WANG Zinan. Interference recognition based on singular value decomposition and neural network[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2573–2578. doi: 10.11999/JEIT190228
    [5] HUANG Liang, ZHANG You, PAN Weijian, et al. Visualizing deep learning-based radio modulation classifier[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 47–58. doi: 10.1109/TCCN.2020.3048113
    [6] 党泽. 基于深度学习的无线通信干扰信号识别与处理技术研究[D]. [硕士论文], 电子科技大学, 2020.

    DANG Ze. Research on the technology of wireless communication interference signal identification and processing based on deep learning[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020.
    [7] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [8] KOCH G, ZEMEL R, and SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1–8.
    [9] CHOPRA S, HADSELL R, and LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 539–546.
    [10] NOROUZI M, FLEET D J, and SALAKHUTDINOV R. Hamming distance metric learning[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1061–1069.
    [11] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3637–3645. doi: 10.5555/3157382.3157504.
    [12] XU Lu, YIN Xingyao, ZONG Zhaoyun, et al. Synchrosqueezing matching pursuit time–frequency analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 411–415. doi: 10.1109/LGRS.2020.2978877
    [13] SHI Jun, ZHENG Jiabin, LIU Xiaoping, et al. Novel short-time fractional Fourier transform: Theory, implementation, and applications[J]. IEEE Transactions on Signal Processing, 2020, 68: 3280–3295. doi: 10.1109/TSP.2020.2992865
    [14] CHICCO D. Siamese Neural Networks: An Overview[M]. New York: Humana, 2021: 73–94.
    [15] YANG Ning, ZHANG Bangning, DING Guoru, et al. Specific emitter identification with limited samples: A model-agnostic meta-learning approach[J]. IEEE Communications Letters, 2022, 26(2): 345–349. doi: 10.1109/LCOMM.2021.3110775
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  943
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2022-02-19
  • 录用日期:  2022-02-21
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回