[1] |
JOHNSTON J, LI Yinchuan, LOPS M, et al. ADMM-net for communication interference removal in stepped-frequency radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 2818–2832. doi: 10.1109/TSP.2021.3076900
|
[2] |
KE Chenxi, LI Jingwen, CHENG Wei, et al. An intelligent anti-interference communication method based on game learning[C]. The 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2021: 182–186.
|
[3] |
黄国策, 王桂胜, 任清华, 等. 基于Hilbert信号空间的未知干扰自适应识别方法[J]. 电子与信息学报, 2019, 41(8): 1916–1923. doi: 10.11999/JEIT180891HUANG Guoce, WANG Guisheng, REN Qinghua, et al. Adaptive recognition method for unknown interference based on Hilbert signal space[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1916–1923. doi: 10.11999/JEIT180891
|
[4] |
冯熳, 王梓楠. 基于奇异值分解与神经网络的干扰识别[J]. 电子与信息学报, 2020, 42(11): 2573–2578. doi: 10.11999/JEIT190228FENG Man and WANG Zinan. Interference recognition based on singular value decomposition and neural network[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2573–2578. doi: 10.11999/JEIT190228
|
[5] |
HUANG Liang, ZHANG You, PAN Weijian, et al. Visualizing deep learning-based radio modulation classifier[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 47–58. doi: 10.1109/TCCN.2020.3048113
|
[6] |
党泽. 基于深度学习的无线通信干扰信号识别与处理技术研究[D]. [硕士论文], 电子科技大学, 2020.DANG Ze. Research on the technology of wireless communication interference signal identification and processing based on deep learning[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020.
|
[7] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
[8] |
KOCH G, ZEMEL R, and SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1–8.
|
[9] |
CHOPRA S, HADSELL R, and LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 539–546.
|
[10] |
NOROUZI M, FLEET D J, and SALAKHUTDINOV R. Hamming distance metric learning[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1061–1069.
|
[11] |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3637–3645. doi: 10.5555/3157382.3157504.
|
[12] |
XU Lu, YIN Xingyao, ZONG Zhaoyun, et al. Synchrosqueezing matching pursuit time–frequency analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(3): 411–415. doi: 10.1109/LGRS.2020.2978877
|
[13] |
SHI Jun, ZHENG Jiabin, LIU Xiaoping, et al. Novel short-time fractional Fourier transform: Theory, implementation, and applications[J]. IEEE Transactions on Signal Processing, 2020, 68: 3280–3295. doi: 10.1109/TSP.2020.2992865
|
[14] |
CHICCO D. Siamese Neural Networks: An Overview[M]. New York: Humana, 2021: 73–94.
|
[15] |
YANG Ning, ZHANG Bangning, DING Guoru, et al. Specific emitter identification with limited samples: A model-agnostic meta-learning approach[J]. IEEE Communications Letters, 2022, 26(2): 345–349. doi: 10.1109/LCOMM.2021.3110775
|