高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向基于闪存的脉冲卷积神经网络的模拟神经元电路

顾晓峰 刘彦航 虞致国 钟啸宇 陈轩 孙一 潘红兵

顾晓峰, 刘彦航, 虞致国, 钟啸宇, 陈轩, 孙一, 潘红兵. 一种面向基于闪存的脉冲卷积神经网络的模拟神经元电路[J]. 电子与信息学报, 2023, 45(1): 116-124. doi: 10.11999/JEIT211249
引用本文: 顾晓峰, 刘彦航, 虞致国, 钟啸宇, 陈轩, 孙一, 潘红兵. 一种面向基于闪存的脉冲卷积神经网络的模拟神经元电路[J]. 电子与信息学报, 2023, 45(1): 116-124. doi: 10.11999/JEIT211249
GU Xiaofeng, LIU Yanhang, YU Zhiguo, ZHONG Xiaoyu, CHEN Xuan, SUN Yi, PAN Hongbing. An Analog Neuron Circuit for Spiking Convolutional Neural Networks Based on Flash Array[J]. Journal of Electronics & Information Technology, 2023, 45(1): 116-124. doi: 10.11999/JEIT211249
Citation: GU Xiaofeng, LIU Yanhang, YU Zhiguo, ZHONG Xiaoyu, CHEN Xuan, SUN Yi, PAN Hongbing. An Analog Neuron Circuit for Spiking Convolutional Neural Networks Based on Flash Array[J]. Journal of Electronics & Information Technology, 2023, 45(1): 116-124. doi: 10.11999/JEIT211249

一种面向基于闪存的脉冲卷积神经网络的模拟神经元电路

doi: 10.11999/JEIT211249
基金项目: 中央高校基本科研业务费专项资金(JUSRP51510),江苏省重点研发计划(BE2019003-2)
详细信息
    作者简介:

    顾晓峰:男,博士,教授,研究方向为半导体材料、器件和电子系统设计与应用

    刘彦航:男,硕士生,研究方向为模拟集成电路设计

    虞致国:男,博士,副教授,研究方向为AI芯片、高性能处理器和低功耗集成电路设计

    钟啸宇:男,硕士生,研究方向为CMOS图像传感芯片设计

    陈轩:女,博士生,研究方向为类脑算法及类脑计算芯片设计

    孙一:男,硕士生,研究方向为AI芯片及验证系统设计

    潘红兵:男,博士,教授,研究方向为超大规模类脑芯片和多核处理器设计

    通讯作者:

    虞致国 yuzhiguo@jiangnan.edu.cn

  • 中图分类号: TN432

An Analog Neuron Circuit for Spiking Convolutional Neural Networks Based on Flash Array

Funds: The Fundamental Research Funds for the Central Universities (JUSRP51510), The Key R&D Program of Jiangsu Province (BE2019003-2)
  • 摘要: 该文面向基于闪存(Flash)的脉冲卷积神经网络(SCNN)提出一种积分发放(IF)型模拟神经元电路,该电路实现了位线电压箝位、电流读出减法和积分发放功能。为解决低电流读出速度较慢的问题,该文设计一种通过增加旁路电流大幅提高电流读出范围和读出速度的方法;针对传统模拟神经元复位方案造成的阵列信息丢失问题,提出一种固定泄放阈值电压的脉冲神经元复位方案,提高了阵列电流信息的完整性和神经网络的精度。基于55 nm 互补金属氧化物半导体(CMOS)工艺对电路进行设计并流片。后仿结果表明,在20 μA电流输出时,读出速度提高了100%,在0 μA电流输出时,读出速度提升了263.6%,神经元电路工作状态良好。测试结果表明,在0~20 μA电流输出范围内,箝位电压误差小于0.2 mV,波动范围小于0.4 mV,电流读出减法线性度可达到99.9%。为了研究所提模拟神经元电路的性能,分别通过LeNet和AlexNet对MNIST和CIFAR-10数据集进行识别准确率测试,结果表明,神经网络识别准确率分别提升了1.4%和38.8%。
  • 图  1  基于Flash的SCNN

    图  2  IF型模拟神经元电路

    图  3  位线箝位单元

    图  4  脉冲神经元工作时序

    图  5  模拟神经元电路版图

    图  6  模拟神经元电路测试板

    图  7  电流读出时间后仿波形图

    图  8  位线箝位电压误差测试结果

    图  9  电流读出减法误差测试结果

    图  10  脉冲神经元仿真结果

    图  11  LeNet对MNIST数据集的识别准确率测试结果

    图  12  AlexNet对CIFAR-10数据集的识别准确率测试结果

    图  13  采用不同权重位数与电容偏差的LeNet对MNIST数据集识别准确率测试结果

    表  1  电流读出时间(ns)

    PVT0 μA20 μA
    ss(80°C)3022
    tt(25°C)2220
    ff(–20°C)2214
    下载: 导出CSV

    表  2  位线箝位电压误差(mV)

    PVT0 μA20 μA
    测试–0.200.15
    tt(25°C)–0.160.12
    ss(80°C)–0.230.18
    ff(–20°C)–0.110.10
    下载: 导出CSV

    表  3  电流减法误差(nA)

    PVT情况(1)情况(2)
    测试20 10
    tt(25°C)146
    ss(80°C)96
    ff(–20°C)2513
    下载: 导出CSV

    表  4  模拟神经元性能总结以及与相关文献模拟神经元对比

    指标名称文献[17]文献[18]本文
    箝位精度±1 mV@0~20 μA±0.2 mV@0~20 μA*
    读出时间1 μs@1 μA40 ns@0 μA22 ns@0 μA
    电流减法线性度≥99.9%≥99.9%*
    复位方式Vintg→0Vintg→0VintgVintgVth
    注:*为测试结果
    下载: 导出CSV
  • [1] LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [2] MOONS B and VERHELST M. A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets[C]. 2016 IEEE Symposium on VLSI Circuits, Honolulu, USA, 2016: 1–2.
    [3] CHIU C C, SAINATH T N, WU Yonghui, et al. State-of-the-art speech recognition with sequence-to-sequence models[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 4774–4778.
    [4] KANG J F, GAO B, HUANG P, et al. Oxide-based RRAM: Requirements and challenges of modeling and simulation[C]. 2015 IEEE International Electron Devices Meeting, Washington, USA, 2015: 5.4. 1–5.4. 4.
    [5] TANG Tianqi, XIA Lixue, LI Boxun, et al. Binary convolutional neural network on RRAM[C]. The 2017 22nd Asia and South Pacific Design Automation Conference, Chiba, Japan, 2017: 782–787.
    [6] CHUNG S W, KISHI T, PARK J W, et al. 4Gbit density STT-MRAM using perpendicular MTJ realized with compact cell structure[C]. 2016 IEEE International Electron Devices Meeting, San Francisco, USA, 2016: 27.1. 1–27.1. 4.
    [7] BEZ R, CAMERLENGHI E, MODELLI A, et al. Introduction to flash memory[J]. Proceedings of the IEEE, 2003, 91(4): 489–502. doi: 10.1109/JPROC.2003.811702
    [8] HAN Runze, HUANG Peng, XIANG Yachen, et al. A novel convolution computing paradigm based on NOR flash array with high computing speed and energy efficiency[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(5): 1692–1703. doi: 10.1109/TCSI.2018.2885574
    [9] GUO X, MERRIKH BAYAT F, BAVANDPOUR M, et al. Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology[C]. 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017: 6.5. 1–6.5. 4.
    [10] CHEN Paiyu, PENG Xiaochen, and YU Shimeng. NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures[C]. 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017: 6.1. 1–6.1. 4.
    [11] EMER J. Design efficient deep learning accelerator: Challenges and opportunities[C]. Kyoto, Japan, VLSI Short Course, 2017: 1–121.
    [12] MALAVENA G, FILIPPI M, SPINELLI A S, et al. Unsupervised learning by spike-timing-dependent plasticity in a mainstream NOR flash memory array—Part I: Cell operation[J]. IEEE Transactions on Electron Devices, 2019, 66(11): 4727–4732. doi: 10.1109/TED.2019.2940602
    [13] HUANG Xiaoyu, JONES E, ZHANG Siru, et al. An FPGA implementation of convolutional spiking neural networks for radioisotope identification[C]. 2021 IEEE International Symposium on Circuits and Systems, Daegu, Korea, 2021: 1–5.
    [14] XIANG Yachen, HUANG Peng, HAN Runze, et al. Efficient and robust spike-driven deep convolutional neural networks based on NOR flash computing array[J] IEEE Transactions on Electron Devices, 2020, 67(6): 2329–2335.
    [15] ZHOU Shibo, CHEN Ying, LI Xiaohua, et al. Deep SCNN-based real-time object detection for self-driving vehicles using LiDAR temporal data[J]. IEEE Access, 2020, 8: 76903–76912. doi: 10.1109/ACCESS.2020.2990416
    [16] PARK J, KWON M W, KIM H, et al. Compact neuromorphic system with four-terminal Si-based synaptic devices for spiking neural networks[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 2438–2444. doi: 10.1109/TED.2017.2685519
    [17] SEO J, MIN K S, KIM D H, et al. A low power integrate and fire neuron circuit for spiking neural network[C]. 2020 International Conference on Electronics, Information, and Communication, Barcelona, Spain, 2020: 1–5.
    [18] YAN Bonan, YANG Qing, CHEN Weihao, et al. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation[C]. 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019: T86–T87.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  522
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 修回日期:  2022-03-24
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回