高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于快速后向投影的超宽带冰雷达数据成像算法

稂时楠 许奔 崔祥斌

黄长强, 赵克新. 基于改进蚁狮算法的无人机三维航迹规划[J]. 电子与信息学报, 2018, 40(7): 1532-1538. doi: 10.11999/JEIT170961
引用本文: 稂时楠, 许奔, 崔祥斌. 基于快速后向投影的超宽带冰雷达数据成像算法[J]. 电子与信息学报, 2022, 44(4): 1249-1256. doi: 10.11999/JEIT211217
HUANG Changqiang, ZHAO Kexin. Three Dimensional Path Planning of UAV with Improved Ant Lion Optimizer[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1532-1538. doi: 10.11999/JEIT170961
Citation: LANG Shinan, XU Ben, CUI Xiangbin. Processing Algorithm Based on Fast Back-projection for Imaging of Ultra-WideBand Ice-sounding Data[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1249-1256. doi: 10.11999/JEIT211217

基于快速后向投影的超宽带冰雷达数据成像算法

doi: 10.11999/JEIT211217
基金项目: 国家自然科学基金(41941006, 41606219, 41776186),科技部重点研发计划(2019YFC1509102),北京教育委员会科研项目(KM201910005027),上海市科技计划项目(21ZR1469700)
详细信息
    作者简介:

    稂时楠:女,1988年生,副教授,硕士生导师,研究方向为冰雷达数据处理、冰雷达图像处理技术

    许奔:男,1997年生,硕士生,研究方向为冰雷达数据处理

    崔祥斌:男,1981年生,研究员,博士生导师,研究方向为探冰雷达(无线电回波探测)技术及其在南极冰盖、冰川测绘和研究南极冰几何和基底条件方面的应用

    通讯作者:

    崔祥斌 cuixiangbin@pric.org.cn

  • 中图分类号: TN957.52

Processing Algorithm Based on Fast Back-projection for Imaging of Ultra-WideBand Ice-sounding Data

Funds: The National Natural Science Foundation of China (41941006, 41606219, 41776186), The National Key R&D Program of China (2019YFC1509102), The Scientific Research Project of Beijing Educational Committee (KM201910005027), Shanghai Science and Technology Development Funds (21ZR1469700)
  • 摘要: 该文提出一种新的冰雷达成像算法,该算法可以在获得高分辨率冰下剖面图的同时,拥有较高的处理效率。该算法是一种基于快速后向投影的超宽带(UWB)冰雷达成像方法,其修正了多层媒质情况下的雷达与目标之间的距离,以及因多层媒质造成的距离徙动几何变化。该文分析了算法的原理,给出了算法实现的具体步骤,并将其应用于点目标仿真和航空冰雷达数据实验,验证了算法在冰下成像中的有效性。此外,将该方法与现有常用冰雷达算法的成像结果在方位向杂波抑制能力、计算时间和方位向分辨率3个方面进行了对比,证明该算法能够在不降低方位向杂波抑制能力和方位向分辨率的前提下,有效提高计算效率。
  • 图  1  空气-冰层多层媒质的几何关系示意图

    图  2  原始数据与最终图像以及子图像序列的关系示意图

    图  3  基于快速后向投影的超宽带冰雷达成像算法流程图

    图  4  仿真中使用的点目标位置

    图  5  点目标分析

    图  6  点目标方位向剖面图

    图  7  点目标距离向对比剖面图

    图  8  实验中处理的测线位置

    图  9  测线T1T1′的各算法的实验结果

    图  10  测线T2T2′的各算法的实验结果

    图  11  单道对比结果

    表  1  仿真参数

    参数名称参数值
    雷达类型线性调频脉冲
    射频载波频率60 MHz
    发射脉冲持续时间1 μs
    信号带宽15 MHz
    距离向采样率50 MHz
    脉冲重复频率195 Hz
    雷达平台速度90 m/s
    雷达平台高度600 m
    合成孔径长度3985 m
    下载: 导出CSV

    表  2  点目标处理测量结果

    方法名称方位向分辨率(3dB宽度)(m)方位向杂波抑制能力计算时间(s)
    基于快速后向投影的超宽带冰雷达成像算法1.34冰面点目标受到抑制2195.04
    多子孔径时域后向投影算法84.96冰面点目标受到抑制2080.20
    冰雷达直接后向投影算法1.22冰面点目标受到抑制12464.34
    匹配滤波算法1.22冰面点目标受到抑制1827.86
    下载: 导出CSV
  • [1] CUI Xiangbin, GREENBAUM J S, BEEM L H, et al. The first fixed-wing aircraft for Chinese Antarctic expeditions: Airframe, modifications, scientific instrumentation and applications[J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1): 1–13. doi: 10.2113/JEEG23.1.1
    [2] CAI Yiheng, LIU Dan, XIE Jin, et al. Attention multi-scale network for automatic layer extraction of ice radar topological sequences[J]. Remote Sensing, 2021, 13(12): 2425. doi: 10.3390/rs13122425
    [3] CAI Yiheng, HU Shaobin, LANG Shinan, et al. End-to-end classification network for ice sheet subsurface targets in radar imagery[J]. Applied Sciences, 2020, 10(7): 2501. doi: 10.3390/app10072501
    [4] LANG Shinan, CUI Xiangbin, ZHAO Yukai, et al. A novel range processing method of surface-based FMCW ice-sounding radar for accurately mapping the internal reflecting horizons in Antarctica[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3633–3643. doi: 10.1109/JSTARS.2020.3004357
    [5] 杨望笑, 窦银科, 稂时楠, 等. 基于改进剥层法的南极冰盖密度反演算法[J]. 电子与信息学报, 2022, 44(4): 1311–1317. doi: 10.11999/JEIT210410

    YANG Wangxiao, DOU Yinke, LANG Shinan, et al. Antarctic ice sheet density inversion algorithm based on improved layer stripping method[J]. Journal of Electronics &Information Technology, 2022, 44(4): 1311–1317. doi: 10.11999/JEIT210410
    [6] ZHAO Bo, ZHANG Yueyi, LANG Shinan, et al. Shallow-layers-detection ice sounding radar for mapping of polar ice sheets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4301010. doi: 10.1109/TGRS.2021.3074186
    [7] 崔祥斌, 孙波, 田钢, 等. 冰雷达探测研究南极冰盖的进展与展望[J]. 地球科学进展, 2009, 24(4): 392–402. doi: 10.3321/j.issn:1001-8166.2009.04.005

    CUI Xiangbin, SUN Bo, TIAN Gang, et al. Progress and prospect of ice radar in investigating and researching Antarctic ice sheet[J]. Advances in Earth Science, 2009, 24(4): 392–402. doi: 10.3321/j.issn:1001-8166.2009.04.005
    [8] LEGARSKY J J, GOGINENI S P, and AKINS T L. Focused synthetic aperture radar processing of ice-sounder data collected over the Greenland ice sheet[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(10): 2109–2117. doi: 10.1109/36.957274
    [9] CUI Xiangbin, JEOFRY H, GREENBAUM J S, et al. Bed topography of princess Elizabeth land in east Antarctica[J]. Earth System Science Data, 2020, 12(4): 2765–2774. doi: 10.5194/essd-12-2765-2020
    [10] 李根, 马彦恒, 熊旭颖. 基于二维空变运动补偿的机动平台大斜视SAR稀疏自聚焦方法[J]. 电子与信息学报, 2021, 43(7): 1992–1999. doi: 10.11999/JEIT200456

    LI Gen, MA Yanheng, and XIONG Xuying. Sparse autofocus method for maneuvering platform high-squint SAR based on two-dimensional spatial-variant motion compensation[J]. Journal of Electronics &Information Technology, 2021, 43(7): 1992–1999. doi: 10.11999/JEIT200456
    [11] YEGULALP A F. Fast backprojection algorithm for synthetic aperture radar[C]. The 1999 IEEE Radar Conference. Radar into the Next Millennium, Waltham, USA, 1999: 60–65.
    [12] LEGARSKY J J. Synthetic aperture radar (SAR) processing of glacial ice depth sounding data, Ka-band backscattering measurements and applications[D]. [Ph. D. dissertation], University of Kansas, 1999.
    [13] HELIERE F, LIN C C, CORR H, et al. Radio echo sounding of pine island glacier, West Antarctica: Aperture synthesis processing and analysis of feasibility from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2573–2582. doi: 10.1109/TGRS.2007.897433
    [14] ALLEY R B, BLANKENSHIP D D, BENTLEY C R, et al. Deformation of till beneath ice stream B, West Antarctica[J]. Nature, 1986, 322(6074): 57–59. doi: 10.1038/322057a0
    [15] LI Jilu, PADEN J, LEUSCHEN C, et al. High-altitude radar measurements of ice thickness over the Antarctic and Greenland ice sheets as a part of operation IceBridge[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 742–754. doi: 10.1109/TGRS.2012.2203822
    [16] LANG Shinan, ZHAO Bo, LIU Xiaojun, et al. Two-dimensional imaging of ice sheets of airborne radar sounder via a combined modified range migration algorithm based on ISFT and beamforming using curvelets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 76–89. doi: 10.1109/JSTARS.2014.2349500
    [17] LANG Shinan, LIU Xiaojun, ZHAO Bo, et al. Focused synthetic aperture radar processing of ice-sounding data collected over the east antarctic ice sheet via the modified range migration algorithm using curvelets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4496–4509. doi: 10.1109/TGRS.2015.2400473
    [18] LANG Shinan, WU Qiang, LIU Xiaojun, et al. Modified planar subarray processing algorithm based on ISFT for real-time imaging of ice-sounding data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1724–1733. doi: 10.1109/TGRS.2016.2631278
    [19] KUSK A and DALL J. SAR focusing of P-band ice sounding data using back-projection[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 4071–4074.
    [20] WU Xiaoqing, JEZEK K C, RODRIGUEZ E, et al. Ice sheet bed mapping with airborne SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3791–3802. doi: 10.1109/TGRS.2011.2132802
    [21] LI Jilu. Mapping of ice sheet deep layers and fast outlet glaciers with multi-channel-high-sensitivity radar[D]. [Ph. D. dissertation], University of Kansas, 2009.
    [22] SHAO Yunfeng, WANG R, DENG Yunkai, et al. Fast backprojection algorithm for bistatic SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1080–1084. doi: 10.1109/LGRS.2012.2230243
    [23] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data[M]. Boston: Artech House, 2005: 131.
    [24] PETERS M E, BLANKENSHIP D D, CARTER S P, et al. Along-track focusing of airborne radar sounding data from West Antarctica for improving basal reflection analysis and layer detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(9): 2725–2736. doi: 10.1109/TGRS.2007.897416
    [25] CUI Xiangbin, GREENBAUM J S, LANG Shinan, et al. The scientific operations of snow eagle 601 in Antarctica in the past five austral seasons[J]. Remote Sensing, 2020, 12(18): 2994. doi: 10.3390/rs12182994
  • 期刊类型引用(23)

    1. 胡城,蔡延光,黄嘉铖,曾庆丰. 蚁狮优化算法研究综述. 自动化与信息工程. 2024(03): 1-10+15 . 百度学术
    2. 陈伟,杨盘隆,吴宣够. 改进蚁狮优化算法及其工程应用. 传感技术学报. 2023(04): 565-574 . 百度学术
    3. 郭家虎,时曼玉. 自适应可调节边界的蚁狮优化算法. 安徽理工大学学报(自然科学版). 2023(04): 1-9+18 . 百度学术
    4. 丁敏,夏兴宇,邹永杰,张乐,刘正堂. 基于改进蝴蝶优化算法的无人机3-D航迹规划方法. 南京航空航天大学学报. 2023(05): 851-858 . 百度学术
    5. 王博文,王培,徐鲁豫. 基于紧凑蚁狮算法的三维路径规划研究. 微电子学与计算机. 2023(08): 19-27 . 百度学术
    6. 韩统,汤安迪,周欢,徐登武,谢磊. 基于LASSA算法的多无人机协同航迹规划方法. 系统工程与电子技术. 2022(01): 233-241 . 百度学术
    7. 李彦苍,吴悦. 基于高斯变异的蚁狮算法及其在组合优化中的应用. 中国科技论文. 2022(03): 295-304 . 百度学术
    8. 张浩,覃涛,徐凌桦,王霄,杨靖. 改进多目标蚁狮算法的WSNs节点部署策略. 西安电子科技大学学报. 2022(05): 47-59 . 百度学术
    9. 来磊,吴德伟,邹鲲,韩昆,李海林. 基于多准则交互膜进化算法的UAV三维航迹规划. 系统工程与电子技术. 2021(01): 138-146 . 百度学术
    10. 马凯强,任利锋,曾喆,万剑华. 顾及恶劣海况的船舶救援路径规划. 海洋科学. 2021(05): 39-46 . 百度学术
    11. 来磊,邹鲲,吴德伟,李保中. 交互策略改进MOFA进化的多UAV协同航迹规划. 系统工程与电子技术. 2021(08): 2282-2289 . 百度学术
    12. 王沙沙,张则强,刘俊琦,陈凤. 多路径交互环形过道布置问题建模及改进蚁狮算法优化. 计算机集成制造系统. 2021(08): 2237-2247 . 百度学术
    13. 靳江锋,刘旭. 联合多核FCM和改进GOA的多无人机协同侦查航迹规划. 兵器装备工程学报. 2021(11): 181-188 . 百度学术
    14. 刘景森,霍宇,李煜. 优选策略的自适应蚁狮优化算法. 模式识别与人工智能. 2020(02): 121-132 . 百度学术
    15. 李庆华,尤越,沐雅琪,张钊,冯超. 一种针对大型凹型障碍物的组合导航算法. 电子与信息学报. 2020(04): 917-923 . 本站查看
    16. 李靖,杨帆. 基于改进灰狼优化算法的区域监测机器人路径规划. 科学技术与工程. 2020(15): 6122-6129 . 百度学术
    17. 孟德智,葛斌. 基于蜂窝分区的蚁狮优化自适应路由算法. 金陵科技学院学报. 2020(02): 17-23 . 百度学术
    18. 王茜,何庆,林杰,杨荣莹. 精英反向学习带扰动因子的混沌蚁狮算法. 智能计算机与应用. 2020(08): 51-57 . 百度学术
    19. 杨帆,方玺,高飞,谢良. 面向三维陷阱空间的改进RRT算法航迹规划. 武汉理工大学学报. 2020(10): 98-106 . 百度学术
    20. 黄长强. 未来空战过程智能化关键技术研究. 航空兵器. 2019(01): 11-19 . 百度学术
    21. 徐钦帅,何庆,魏康园. 改进蚁狮算法的无线传感器网络覆盖优化. 传感技术学报. 2019(02): 266-275 . 百度学术
    22. ZHANG Zhenxing,YANG Rennong,LI Huanyu,FANG Yuhuan,HUANG Zhenyu,ZHANG Ying. Antlion optimizer algorithm based on chaos search and its application. Journal of Systems Engineering and Electronics. 2019(02): 352-365 . 必应学术
    23. 边莉,何辉,杨彦方,刘文静. 基于改进型蚁狮算法的PID控制器参数优化. 吉林大学学报(信息科学版). 2019(03): 292-298 . 百度学术

    其他类型引用(23)

  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  746
  • HTML全文浏览量:  433
  • PDF下载量:  101
  • 被引次数: 46
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2022-02-19
  • 录用日期:  2022-02-21
  • 网络出版日期:  2022-03-02
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回