高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地下管线渗漏环境下探地雷达信号特征分析

刘海 黄肇刚 岳云鹏 崔杰 胡群芳

刘海, 黄肇刚, 岳云鹏, 崔杰, 胡群芳. 地下管线渗漏环境下探地雷达信号特征分析[J]. 电子与信息学报, 2022, 44(4): 1257-1264. doi: 10.11999/JEIT211213
引用本文: 刘海, 黄肇刚, 岳云鹏, 崔杰, 胡群芳. 地下管线渗漏环境下探地雷达信号特征分析[J]. 电子与信息学报, 2022, 44(4): 1257-1264. doi: 10.11999/JEIT211213
LIU Hai, HUANG Zhaogang, YUE Yunpeng, CUI Jie, HU Qunfang. Characteristics Analysis of Ground Penetrating Radar Signals for Groundwater Pipe Leakage Environment[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1257-1264. doi: 10.11999/JEIT211213
Citation: LIU Hai, HUANG Zhaogang, YUE Yunpeng, CUI Jie, HU Qunfang. Characteristics Analysis of Ground Penetrating Radar Signals for Groundwater Pipe Leakage Environment[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1257-1264. doi: 10.11999/JEIT211213

地下管线渗漏环境下探地雷达信号特征分析

doi: 10.11999/JEIT211213
基金项目: 国家自然科学基金(41874120, 51978182, 5202010500),深圳市科技计划(KQTD20180412181337494),上海市科学技术委员会计划项目(19DZ1201702)
详细信息
    作者简介:

    刘海:男,1986年生,博士,教授,博士生导师,研究方向为雷达遥感与深空探测、探地雷达、结构无损检测

    黄肇刚:男,1996年生,硕士生,研究方向为探地雷达检测

    岳云鹏:男,1995年生,博士生,研究方向为探地雷达数据处理及成像算法

    崔杰:男,1962年生,博士,教授,博士生导师,研究方向为隧道工程、防灾减灾工程

    胡群芳:男,1978年生,博士,教授,博士生导师,研究方向为城市综合防灾与灾害仿真、隧道及地下结构不确定分析

    通讯作者:

    胡群芳 huqunf@tongji.edu.cn

  • 中图分类号: TN926.21; P631.3

Characteristics Analysis of Ground Penetrating Radar Signals for Groundwater Pipe Leakage Environment

Funds: The National Natural Science Foundation of China (41874120, 51978182, 5202010500), Shenzhen Science and Technology Program (KQTD20180412181337494), The Research Project of Shanghai Municipal Science and Technology Commission Program (19DZ1201702)
  • 摘要: 探地雷达(GPR)在地下水管渗漏的检测中具有良好的应用前景。前期研究表明:地下水管的渗漏会在雷达剖面中形成震荡信号,但其形成机理尚不明晰。为揭示不同材质地下管道渗漏后的探地雷达信号特征的成因,该文结合物理模型试验与渗流场-电磁场数值模拟分析干砂中PVC管和金属管渗漏前后雷达信号特征、渗漏后震荡信号的形成机理和电磁波传播路径。结果表明:地下水管发生渗漏后,管道周围区域出现一定分层状态,电磁波在传播过程中存在更多界面反射和界面间的多次波。PVC管渗漏后,管道顶部、底部反射信号和爬行波信号在渗漏区中多次反射形成复杂的震荡双曲线信号,而金属管渗漏后管壁与渗漏区间存在多次反射。研究成果可为探地雷达在地下水管渗漏探测实际应用提供技术支持。
  • 图  1  水管渗漏模拟探测试验场地及试验方案

    图  2  砂地试验PVC管渗漏前后实测雷达图像

    图  3  砂地试验金属管渗漏前后实测雷达图像

    图  4  水管渗漏过程中管道周围土体饱和度分布图

    图  5  由土体饱和度分布计算得到的介电模型

    图  6  满水PVC管的探地雷达图像和反射信号传播路径分析

    图  7  PVC管渗漏后的探地雷达图像和反射信号传播路径分析

    图  8  金属管渗漏后的探地雷达图像和反射信号传播路径分析

    表  1  孔压和饱和度之间的关系

    参数数值
    饱和度0.20.30.450.70.91
    孔压(kPa)–14–7.4–4.2–2.5–1.30
    下载: 导出CSV
  • [1] 城乡建设统计年鉴[Z]. 住房与城乡建设部, 2020.

    Statistical Yearbook of Urban and Rural Construction[Z]. Ministry of Housing and Urban-Rural Development, 2020.
    [2] 王帅超. 城市地下管道渗漏引起的路面塌陷机理分析与研究[D]. [硕士论文], 郑州大学, 2017.

    WANG Shuaichao. Analysis and study on subsidence mechanisms of road caused by leakage of urban underground pipeline[D]. [Master dissertation], Zhengzhou University, 2017.
    [3] 城市供水统计年鉴[Z]. 统计局, 2018.

    Statistical Yearbook of Urban Water Supply[Z]. Statistics, 2018.
    [4] YU Yicheng, SAFARI A, NIU Xudong, et al. Acoustic and ultrasonic techniques for defect detection and condition monitoring in water and sewerage pipes: A review[J]. Applied Acoustics, 2021, 183: 108282. doi: 10.1016/j.apacoust.2021.108282
    [5] ALMEIDA F, BRENNAN M, JOSEPH P, et al. On the acoustic filtering of the pipe and sensor in a buried plastic water pipe and its effect on leak detection: An experimental investigation[J]. Sensors, 2014, 14(3): 5595–5610. doi: 10.3390/s140305595
    [6] LIU Zheng and KLEINER Y. State of the art review of inspection technologies for condition assessment of water pipes[J]. Measurement, 2013, 46(1): 1–15. doi: 10.1016/j.measurement.2012.05.032
    [7] GAO Yan, BRENNAN M J, JOSEPH P F, et al. On the selection of acoustic/vibration sensors for leak detection in plastic water pipes[J]. Journal of Sound and Vibration, 2005, 283(3/5): 927–941. doi: 10.1016/j.jsv.2004.05.004
    [8] DATTA S and SARKAR S. A review on different pipeline fault detection methods[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 97–106. doi: 10.1016/j.jlp.2016.03.010
    [9] 廖光伟, 张春萍, 武治国, 等. 基于双参数监测的供水管网漏损实验研究[J]. 供水技术, 2018, 12(6): 17–21. doi: 10.3969/j.issn.1673-9353.2018.06.005

    LIAO Guangwei, ZHANG Chunping, WU Zhiguo, et al. Experimental study on leakage of water supply network based on the two-parameter monitoring[J]. Water Technology, 2018, 12(6): 17–21. doi: 10.3969/j.issn.1673-9353.2018.06.005
    [10] BACH P M and KODIKARA J K. Reliability of infrared thermography in detecting leaks in buried water reticulation pipes[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9): 4210–4224. doi: 10.1109/jstars.2017.2708817
    [11] LIU Hai, SHI Zhenshi, LI Jianhui, et al. Detection of road cavities in urban cities by 3D ground-penetrating radar[J]. Geophysics, 2021, 86(3): WA25–WA33. doi: 10.1190/geo2020-0384.1
    [12] CATALDO A, DE BENEDETTO E, CANNAZZA G, et al. Enhancement of leak detection in pipelines through time-domain reflectometry/ground penetrating radar measurements[J]. IET Science, Measurement & Technology, 2017, 11(6): 696–702. doi: 10.1049/iet-smt.2016.0310
    [13] CATALDO A, PERSICO R, LEUCCI G, et al. Time domain reflectometry, ground penetrating radar and electrical resistivity tomography: A comparative analysis of alternative approaches for leak detection in underground pipes[J]. NDT & E International, 2014, 62: 14–28. doi: 10.1016/j.ndteint.2013.10.007
    [14] GAO Lei, SONG Hantao, LIU Hanlong, et al. Model test study on oil leakage and underground pipelines using ground penetrating radar[J]. Russian Journal of Nondestructive Testing, 2020, 56(5): 435–444. doi: 10.1134/s1061830920050058
    [15] LAI W W L, CHANG R K W, SHAM J F C, et al. Perturbation mapping of water leak in buried water pipes via laboratory validation experiments with high-frequency ground penetrating radar (GPR)[J]. Tunnelling and Underground Space Technology, 2016, 52: 157–167. doi: 10.1016/j.tust.2015.10.017
    [16] OCAÑA-LEVARIO S J, CARREÑO-ALVARADO E P, AYALA-CABRERA D, et al. GPR image analysis to locate water leaks from buried pipes by applying variance filters[J]. Journal of Applied Geophysics, 2018, 152: 236–247. doi: 10.1016/j.jappgeo.2018.03.025
    [17] 胡群芳, 郑泽昊, 刘海, 等. 三维探地雷达在城市市政管线渗漏探测中的应用[J]. 同济大学学报:自然科学版, 2020, 48(7): 972–981. doi: 10.11908/j.issn.0253-374x.19395

    HU Qunfang, ZHENG Zehao, LIU Hai, et al. Application of 3D ground penetrating radar to leakage detection of urban underground pipes[J]. Journal of Tongji University:Natural Science, 2020, 48(7): 972–981. doi: 10.11908/j.issn.0253-374x.19395
    [18] LAU P K W, CHEUNG B W Y, LAI W W L, et al. Characterizing pipe leakage with a combination of GPR wave velocity algorithms[J]. Tunnelling and Underground Space Technology, 2021, 109: 103740. doi: 10.1016/j.tust.2020.103740
    [19] 沈宇鹏, 董淑海, 王卿, 等. 城市供水管道渗漏程度的渗流模型分析与探地雷达信号正演[J]. 工程地质学报, 2016, 24(S1): 422–429. doi: 10.13544/j.cnki.jeg.2016.s1.062

    SHEN Yupeng, DONG Shuhai, WANG Qing, et al. Different degrees of water pipelines leakage model ananysis and GPR signal forward simulation[J]. Journal of Engineering Geology, 2016, 24(S1): 422–429. doi: 10.13544/j.cnki.jeg.2016.s1.062
    [20] AYALA-CABRERA D, HERRERA M, IZQUIERDO J, et al. GPR-based water leak models in water distribution systems[J]. Sensors, 2013, 13(12): 15912–15936. doi: 10.3390/s131215912
    [21] 费康, 彭劼. ABAQUS岩土工程实例详解[M]. 北京: 人民邮电出版社, 2017: 177

    FEI Kang and PENG Jie. ABAQUS geotechnical Examples are Explained in Detail[M]. Beijing: People's Post and Telecommunications Publishing House, 2017: 177.
    [22] 董泽君, 鹿琪, 冯晅, 等. 探地雷达测量土壤含水量的应用研究[J]. 地球物理学进展, 2017, 32(5): 2207–2213. doi: 10.6038/pg20170549

    DONG Zejun, LU Qi, FENG Xuan, et al. Estimation of soil water content using ground penetrating radar[J]. Progress in Geophysics, 2017, 32(5): 2207–2213. doi: 10.6038/pg20170549
    [23] MCCUTCHEON M C, FARAHANI H J, STEDNICK J D, et al. Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field[J]. Biosystems Engineering, 2006, 94(1): 19–32. doi: 10.1016/j.biosystemseng.2006.01.002
    [24] WARREN C, GIANNOPOULOS A, and GIANNAKIS I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020
    [25] 刘素贞, 董硕, 张闯, 等. 基于电磁超声爬波法对空腔结构部位裂纹缺陷的检测[J]. 高电压技术, 2019, 45(7): 2119–2125. doi: 10.13336/j.1003-6520.hve.20190628008

    LIU Suzhen, DONG Shuo, ZHANG Chuang, et al. Detection of crack defects in cavity structures based on electromagnetic ultrasonic creeping wave method[J]. High Voltage Engineering, 2019, 45(7): 2119–2125. doi: 10.13336/j.1003-6520.hve.20190628008
    [26] DEMIRCI S, YIGIT E, ESKIDEMIR I H, et al. Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method[J]. NDT & E International, 2012, 47: 35–42. doi: 10.1016/j.ndteint.2011.12.008
    [27] 王楠. 基于任意曲面建模技术的一致性几何绕射理论方法[D]. [博士论文], 西安电子科技大学, 2007.

    WANG Nan. Study on the uniform geometrical theory of diffraction method with targets constructed by arbitrary surfaces[D]. [Ph. D. dissertation], Xidian University, 2007.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1564
  • HTML全文浏览量:  598
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2022-02-13
  • 录用日期:  2022-03-14
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回