高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差分滤波的非线性估计及校正方法

赵博 张曰义 徐源鸿 刘小军 方广有

赵博, 张曰义, 徐源鸿, 刘小军, 方广有. 基于差分滤波的非线性估计及校正方法[J]. 电子与信息学报, 2022, 44(4): 1295-1302. doi: 10.11999/JEIT211193
引用本文: 赵博, 张曰义, 徐源鸿, 刘小军, 方广有. 基于差分滤波的非线性估计及校正方法[J]. 电子与信息学报, 2022, 44(4): 1295-1302. doi: 10.11999/JEIT211193
ZHAO Bo, ZHANG Yueyi, XU Yuanhong, LIU Xiaojun, FANG Guangyou. A Method of Nonlinearity Estimation and Correction Based on Difference Filtering[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1295-1302. doi: 10.11999/JEIT211193
Citation: ZHAO Bo, ZHANG Yueyi, XU Yuanhong, LIU Xiaojun, FANG Guangyou. A Method of Nonlinearity Estimation and Correction Based on Difference Filtering[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1295-1302. doi: 10.11999/JEIT211193

基于差分滤波的非线性估计及校正方法

doi: 10.11999/JEIT211193
基金项目: 国家自然科学基金 (41776204)
详细信息
    作者简介:

    赵博:男,1983年生,副研究员,研究方向为雷达探测系统、数字系统设计以及信号处理

    张曰义:男,1996年生,硕士生,研究方向为FMCW雷达非线性相位估计及校正技术

    徐源鸿:女,1997年生,硕士生,研究方向为雷达信号与图像处理

    刘小军:男,1972年生,研究员,研究方向为应用于极地冰盖、电离层以及陆地遥感的雷达

    方广有:男,1963年生,研究员,研究方向为超宽带雷达、探地雷达信号处理和识别方法、太赫兹成像技术和计算电磁学

    通讯作者:

    方广有 gyfang@mail.ie.ac.cn

  • 中图分类号: TN957.52

A Method of Nonlinearity Estimation and Correction Based on Difference Filtering

Funds: The National Natural Science Foundation of China (41776204)
  • 摘要: 在线性调频连续波雷达系统中,各个器件的非理想特性使得信号的相位产生各种畸变,严重影响雷达的测距精度以及成像质量,需要经过一定的校正手段才能获得高精度的测量结果。该文针对线性调频连续波信号以及确定性非线性相位的特点,建立了受到非线性干扰的线性调频连续波信号模型,提出一种新的基于差分滤波的非线性估计方法能够对周期性及非周期性非线性进行同时估计,并利用匹配傅里叶变换(MFT)方法对非线性相位进行校正。通过仿真和对比分析,表明该方法与其他方法相比具有更高的估计精度,且在非线性度较大时也能够具有良好的校正效果。最后采用雷达的实测数据验证了该算法的有效性。
  • 图  1  基于差分滤波的非线性估计校正方法流程

    图  2  射频信号的非线性$\varepsilon (t)$

    图  3  差频信号时域波形与归一化频谱图

    图  4  差频信号相位与时频曲线

    图  5  非线性估计结果;“毛刺”现象与平滑处理结果

    图  6  两种方法的相位与相位差对比

    图  7  RVP和MFT校正结果对比

    图  8  闭环差频数据归一化频谱

    图  9  射频非线性相位以及其中的周期性非线性相位估计结果

    图  10  闭环数据非线性校正结果对比

    图  11  实测数据成像

    图  12  校正之后的实际图像

    图  13  目标处其中一道数据校正前后效果对比

    表  1  雷达系统仿真参数

    参数名称参数符号数值单位
    频率范围$ f $1~2.5GHz
    采样率${f}_{{\rm{s}}}$2.5MHz
    时宽$ T $4ms
    带宽$B$1.5GHz
    调频斜率$K$375GHz/s
    目标时延$\tau $2us
    下载: 导出CSV

    表  2  雷达系统设计参数

    参数名称参数符号数值单位
    频率范围$f$450~2150MHz
    采样率${f_{\rm{s}}}$200kHz
    时宽$T$4ms
    带宽$B$1.7GHz
    调频斜率$K$425GHz/s
    下载: 导出CSV
  • [1] RIZIK A, TAVANTI E, VIO R, et al. Single target recognition using a low-cost FMCW radar based on spectrum analysis[C]. The 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 2020: 1–4.
    [2] LI Yabin, PENG Hongli, LI Mingming, et al. A miniaturized and high frequency response 35GHz FMCW radar for short range target detections[C]. 2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS), Shenzhen, China, 2020: 1–3.
    [3] BI Hui, WANG Jingjing, and BI Guoan. Wavenumber domain algorithm-based FMCW SAR sparse imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7466–7475. doi: 10.1109/TGRS.2019.2913761
    [4] WANG Shuai, WANG Bingnan, XIANG Maosheng, et al. Signal modeling and imaging of frequency-modulated continuous wave sliding spotlight synthetic aperture Ladar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4007305. doi: 10.1109/LGRS.2020.3043747
    [5] ZHAO Bo, ZHANG Yueyi, LANG Shinan, et al. Shallow-layers-detection ice sounding radar for mapping of polar ice sheets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4301010. doi: 10.1109/TGRS.2021.3074186
    [6] AYHAN S, SCHERR S, BHUTANI A, et al. Impact of frequency ramp nonlinearity, phase noise, and SNR on FMCW radar accuracy[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(10): 3290–3301. doi: 10.1109/TMTT.2016.2599165
    [7] CHU Wei, LIU Yunqing, LI Xiaolong, et al. Phase estimation and correction of nonlinear sweep frequency for detecting vehicle targets with FMCW Radar[C]. The IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 2020: 1273–1277.
    [8] LANG Shinan, CUI Xiangbin, ZHAO Yukai, et al. A novel range processing method of surface-based FMCW ice-sounding radar for accurately mapping the internal reflecting horizons in Antarctica[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3633–3643. doi: 10.1109/JSTARS.2020.3004357
    [9] ANGHEL A, VASILE G, CACOVEANU R, et al. Short-range wideband FMCW Radar for Millimetric displacement measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5633–5642. doi: 10.1109/TGRS.2013.2291573
    [10] JIN Ke, LAI Tao, WANG Ting, et al. A method for nonlinearity correction of wideband FMCW radar[C]. Proceedings of 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–5.
    [11] WANG Rongrong, XIANG Maosheng, WANG Bingnan, et al. Nonlinear phase estimation and compensation for FMCW Ladar based on Synchrosqueezing wavelet transform[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(7): 1174–1178. doi: 10.1109/LGRS.2020.2997999
    [12] META A, HOOGEBOOM P, and LIGTHART L. Range Non-linearities correction in FMCW SAR[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 403–406.
    [13] YANG Jian, LIU Chang, and WANG Yanfei. Nonlinearity correction of FMCW SAR based on homomorphic deconvolution[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 991–995. doi: 10.1109/LGRS.2012.2227667
    [14] 赵志勇, 常文革, 黎向阳, 等. 去调频处理中空变相位误差补偿方法[J]. 国防科技大学学报, 2014, 36(3): 169–176. doi: 10.11887/j.cn.201403030

    ZHAO Zhiyong, CHANG Wenge, LI Xiangyang, et al. Range-dependent phase error compensation of dechirp[J]. Journal of National University of Defense Technology, 2014, 36(3): 169–176. doi: 10.11887/j.cn.201403030
    [15] 郭文举. 宽带调频连续波雷达幅相误差估计与补偿技术[D]. [硕士论文], 北京理工大学, 2016.

    GUO Wenju. The amplitude and phase error estimation and compensation technology of wideband FMCW radar[D]. [Master dissertation], Beijing Institute of Technology, 2016.
    [16] 宿绍莹, 侯庆凯, 任艳, 等. 匹配滤波和去斜率脉压方法性能分析与比较[J]. 信号处理, 2011, 27(2): 202–206. doi: 10.3969/j.issn.1003-0530.2011.02.007

    SU Shaoying, HOU Qingkai, REN Yan, et al. Performance comparison of matched filtering and dechirp pulse compression[J]. Signal Processing, 2011, 27(2): 202–206. doi: 10.3969/j.issn.1003-0530.2011.02.007
    [17] 耿淑敏, 江志红, 程翥, 等. FM-CW SAR距离-多普勒成像算法研究[J]. 电子与信息学报, 2007, 29(10): 2346–2349. doi: 10.3724/SP.J.1146.2006.00415

    GENG Shumin, JIANG Zhihong, CHENG Zhu, et al. Study on imaging algorithm of FM-CW SAR[J]. Journal of Electronics &Information Technology, 2007, 29(10): 2346–2349. doi: 10.3724/SP.J.1146.2006.00415
    [18] 王盛利, 李士国, 倪晋麟, 等. 一种新的变换—匹配傅里叶变换[J]. 电子学报, 2001, 29(3): 403–405. doi: 10.3321/j.issn:0372-2112.2001.03.030

    WANG Shengli, LI Shiguo, NI Jinlin, et al. A new transform—match Fourier transform[J]. Acta Electronica Sinica, 2001, 29(3): 403–405. doi: 10.3321/j.issn:0372-2112.2001.03.030
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  935
  • HTML全文浏览量:  627
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 修回日期:  2022-03-08
  • 录用日期:  2022-03-10
  • 网络出版日期:  2022-03-11
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回