高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于持续学习和联合特征提取的特定辐射源识别

张立民 谭凯文 闫文君 张婷婷 汤淼

张立民, 谭凯文, 闫文君, 张婷婷, 汤淼. 基于持续学习和联合特征提取的特定辐射源识别[J]. 电子与信息学报, 2023, 45(1): 308-316. doi: 10.11999/JEIT211176
引用本文: 张立民, 谭凯文, 闫文君, 张婷婷, 汤淼. 基于持续学习和联合特征提取的特定辐射源识别[J]. 电子与信息学报, 2023, 45(1): 308-316. doi: 10.11999/JEIT211176
ZHANG Limin, TAN Kaiwen, YAN Wenjun, ZHANG Tingting, TANG Miao. Specific Emitter Identification Based on Continuous Learning and Joint Feature Extraction[J]. Journal of Electronics & Information Technology, 2023, 45(1): 308-316. doi: 10.11999/JEIT211176
Citation: ZHANG Limin, TAN Kaiwen, YAN Wenjun, ZHANG Tingting, TANG Miao. Specific Emitter Identification Based on Continuous Learning and Joint Feature Extraction[J]. Journal of Electronics & Information Technology, 2023, 45(1): 308-316. doi: 10.11999/JEIT211176

基于持续学习和联合特征提取的特定辐射源识别

doi: 10.11999/JEIT211176
基金项目: 国家自然科学基金(91538201),泰山学者工程专项经费基金(ts201511020)
详细信息
    作者简介:

    张立民:男,教授,博士生导师,研究方向为卫星信号处理及应用

    谭凯文:男,硕士生,研究方向为特定辐射源识别

    闫文君:男,博士,副教授,研究方向为空时分组码检测

    张婷婷:女,硕士生,研究方向为飞行姿态识别

    汤淼:男,硕士生,研究方向为计算机兵力对抗生成

    通讯作者:

    谭凯文 1326097124@qq.com

  • 中图分类号: TN911.7

Specific Emitter Identification Based on Continuous Learning and Joint Feature Extraction

Funds: The National Natural Science Foundation of China (91538201), Taishan Scholars Project Special Fund (ts201511020)
  • 摘要: 针对特定辐射源识别(SEI)识别准确率较低和单次样本学习花销较大的问题,该文提出一种基于增量式学习的SEI方法,设计多个连续增量深度极限学习机(CIDELM)。从截获信号中分别提取变分模态分解(VMD)后的Hilbert谱投影和高阶谱,降维后作为射频指纹(RFF)用于分类;在极限学习机(ELM)中采用稀疏自编码结构对多个隐含层进行无监督训练,并利用参数搜索策略确定最佳隐含层数和隐节点个数,实现对多批次标记样本的连续在线匹配。实验结果表明,该方法对不同调制方式、载波频率和收发距离均能表现出良好兼容性,能够实现对于多个辐射源个体的有效识别。
  • 图  1  基于联合特征提取的SEI框架

    图  2  VMD处理后的3D-Hilbert谱及时频域投影

    图  3  DELM结构

    图  4  高阶谱分析-CIDELM识别性能

    图  5  VMD谱灰度向量-CIDELM识别性能

    图  6  识别性能随收发距离变化曲线

    图  7  不同方法识别效果对比

    表  1  算法时间复杂度分析

    辐射源数量平均迭代时间(s)平均识别时间(s)
    K = 351.175.06
    K = 456.485.57
    K = 565.345.56
    K = 670.556.41
    下载: 导出CSV
  • [1] POLAK A C, DOLATSHAHI S, and GOECKEL D L. Identifying wireless users via transmitter imperfections[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(7): 1469–1479. doi: 10.1109/JSAC.2011.110812
    [2] ELDEMERDASH Y A, DOBRE O A, ÜRETEN O, et al. Identification of cellular networks for intelligent radio measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8): 2204–2211. doi: 10.1109/TIM.2017.2687539
    [3] DOBRE O A. Signal identification for emerging intelligent radios: Classical problems and new challenges[J]. IEEE Instrumentation & Measurement Magazine, 2015, 18(2): 11–18. doi: 10.1109/MIM.2015.7066677
    [4] ZHANG Zhongshan, LONG Keping, and WANG Jianping. Self-organization paradigms and optimization approaches for cognitive radio technologies: A survey[J]. IEEE Wireless Communications, 2013, 20(2): 36–42. doi: 10.1109/MWC.2013.6507392
    [5] YUAN Yingjun, WANG Xiang, HUANG Zhitao, et al. Detection of radio transient signal based on permutation entropy and GLRT[J]. Wireless Personal Communications, 2015, 82(2): 1047–1057. doi: 10.1007/s11277-014-2265-2
    [6] DANEV B and CAPKUN S. Transient-based identification of wireless sensor nodes[C]. 2009 IEEE International Conference on Information Processing in Sensor Networks, San Francisco, USA, 2009: 25–36.
    [7] URETEN O and SERINKEN N. Bayesian detection of Wi-Fi transmitter RF fingerprints[J]. Electronics Letters, 2005, 41(6): 373–374. doi: 10.1049/el:20057769
    [8] GUO Shanzeng, WHITE R E, and LOW M. A comparison study of radar emitter identification based on signal transients[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 286–291.
    [9] GENÇOL K, KARA A, and AT N. Improvements on deinterleaving of radar pulses in dynamically varying signal environments[J]. Digital Signal Processing, 2017, 69: 86–93. doi: 10.1016/j.dsp.2017.06.010
    [10] WANG Wenhao, SUN Zhi, PIAO Sixu, et al. Wireless physical-layer identification: Modeling and validation[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(9): 2091–2106. doi: 10.1109/TIFS.2016.2552146
    [11] YUAN Yingjun, HUANG Zhitao, WU Hao, et al. Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features[J]. IET Communications, 2014, 8(13): 2404–2412. doi: 10.1049/iet-com.2013.0865
    [12] ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert–Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/TIFS.2016.2520908
    [13] SATIJA U, TRIVEDI G, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 581–591. doi: 10.1109/TIFS.2018.2855665
    [14] PAN Yiwei, YANG Sihan, PENG Hua, et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7: 54425–54434. doi: 10.1109/ACCESS.2019.2913759
    [15] AGHNAIYA A, DALVEREN Y, and KARA A. On the performance of variational mode decomposition-based radio frequency fingerprinting of Bluetooth devices[J]. Sensors, 2020, 20(6): 1704. doi: 10.3390/s20061704
    [16] SA Kejin, LANG Dapeng, WANG Chenggang, et al. Specific emitter identification techniques for the internet of things[J]. IEEE Access, 2020, 8: 1644–1652. doi: 10.1109/ACCESS.2019.2962626
    [17] SUN Liting, WANG Xiang, YANG Afeng, et al. Radio frequency fingerprint extraction based on multi-dimension approximate entropy[J]. IEEE Signal Processing Letters, 2020, 27: 471–475. doi: 10.1109/LSP.2020.2978333
    [18] 秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084

    QIN Xin, HUANG Jie, WANG Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084
    [19] WANG Xinyue, SU Chang, and SUN Songlin. An improved method of radar emitter fingerprint recognition based on GS-SVM[C]. 2019 19th International Symposium on Communications and Information Technologies (ISCIT), Ho Chi Minh City, Vietnam, 2019: 244–248.
    [20] 韩洁, 张涛, 王欢欢, 等. 基于3D-Hibert能量谱和多尺度分形特征的通信辐射源个体识别[J]. 通信学报, 2017, 38(4): 99–109. doi: 10.11959/j.issn.1000-436x.2017080

    HAN Jie, ZHANG Tao, WANG Huanhuan, et al. Communication emitter individual identification based on 3D-Hibert energy spectrum and multi-scale fractal features[J]. Journal on Communications, 2017, 38(4): 99–109. doi: 10.11959/j.issn.1000-436x.2017080
    [21] QIAN Yunhan, QI Jie, KUAI Xiaoyan, et al. Specific emitter identification based on multi-level sparse representation in automatic identification system[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2872–2884. doi: 10.1109/TIFS.2021.3068010.5
    [22] REN Kan, YE Hongliang, GU Guohua, et al. Pulses classification based on sparse auto-encoders neural networks[J]. IEEE Access, 2019, 7: 92651–92660. doi: 10.1109/ACCESS.2019.2927724
    [23] WANG Yu, GUI Guan, GACANIN H, et al. An efficient specific emitter identification method based on complex-valued neural networks and network compression[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2305–2317. doi: 10.1109/JSAC.2021.3087243
    [24] YU Jiabao, HU Aiqun, LI Guyue, et al. A robust RF fingerprinting approach using multisampling convolutional neural network[J]. IEEE Internet of Things Journal, 2019, 6(4): 6786–6799. doi: 10.1109/JIOT.2019.2911347
    [25] WU Qingyang, FERES C, KUZMENKO D, et al. Deep learning based RF fingerprinting for device identification and wireless security[J]. Electronics Letters, 2018, 54(24): 1405–1407. doi: 10.1049/el.2018.6404
    [26] HE Boxiang and WANG Fanggang. Cooperative specific emitter identification via multiple distorted receivers[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3791–3806. doi: 10.1109/TIFS.2020.3001721
    [27] DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675
    [28] HUANG Guangbin, ZHU Qinyu, and SIEW C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C]. 2014 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 2004: 985–990.
    [29] TANG Jiexiong, DENG Chenwei, and HUANG Guangbin. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 27(4): 809–821. doi: 10.1109/TNNLS.2015.2424995
    [30] LE Batuan, XIAO Dong, MAO Yachun, et al. Coal quality exploration technology based on an incremental multilayer extreme learning machine and remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4192–4201. doi: 10.1109/TGRS.2018.2890040
    [31] LE Batuan, XIAO Dong, MAO Yachun, et al. Coal exploration based on a multilayer extreme learning machine and satellite images[J]. IEEE Access, 2018, 6: 44328–44339. doi: 10.1109/ACCESS.2018.2860278
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  754
  • HTML全文浏览量:  514
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2022-05-16
  • 网络出版日期:  2022-05-24
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回