高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种多传感器自适应量测迭代更新GM-PHD跟踪算法

申屠晗 李凯斌 荣英佼 李彦欣 郭云飞

申屠晗, 李凯斌, 荣英佼, 李彦欣, 郭云飞. 一种多传感器自适应量测迭代更新GM-PHD跟踪算法[J]. 电子与信息学报, 2022, 44(12): 4168-4177. doi: 10.11999/JEIT211138
引用本文: 申屠晗, 李凯斌, 荣英佼, 李彦欣, 郭云飞. 一种多传感器自适应量测迭代更新GM-PHD跟踪算法[J]. 电子与信息学报, 2022, 44(12): 4168-4177. doi: 10.11999/JEIT211138
SHENTU Han, LI Kaibin, RONG Yingjiao, LI Yanxin, GUO Yunfei. A Multi-sensor Adaptive Observation Iteratively Updating GM-PHD Tracking Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4168-4177. doi: 10.11999/JEIT211138
Citation: SHENTU Han, LI Kaibin, RONG Yingjiao, LI Yanxin, GUO Yunfei. A Multi-sensor Adaptive Observation Iteratively Updating GM-PHD Tracking Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4168-4177. doi: 10.11999/JEIT211138

一种多传感器自适应量测迭代更新GM-PHD跟踪算法

doi: 10.11999/JEIT211138
基金项目: 基础加强计划技术领域基金(2021-JCJQ-JJ-0301),近地面探测技术重点实验室基金(6142414200203),浙江省属高校基本科研业务费专项资金(GK219909299001-405),浙江省自然科学基金重点项目(LZ20F010002),国家大学生创新创业训练计划(202110336022)
详细信息
    作者简介:

    申屠晗:男,1984年生,副教授,研究方向为信息融合、目标检测与跟踪、机器学习与智能信息处理等

    李凯斌:男,1997年生,硕士生,研究方向为多传感器多目标跟踪、SLAM

    荣英佼:女,1978年生,工程师,研究方向为雷达信号处理、信息融合

    郭云飞:男,1978年生,教授,研究方向为目标跟踪、信息融合

    通讯作者:

    荣英佼 yingjiao_rong@hotmail.com

  • 中图分类号: TP212

A Multi-sensor Adaptive Observation Iteratively Updating GM-PHD Tracking Algorithm

Funds: The Technology Foundation for Basic Enhancement Plan (2021-JCJQ-JJ-0301), The Foundation of Key Laboratory of Near Ground Detection Technology (6142414200203), The Fundamental Research Funds for the Provincial Universities of Zhejiang (GK219909299001-405), Zhejiang Provincial Natural Science Foundation of China (LZ20F010002), The National College Students Innovation and Entrepreneurship Training Program of China (202110336022)
  • 摘要: 针对多传感器观测数据质量不同且未知时,多传感器量测迭代更新高斯混合概率假设密度(GM-PHD)滤波器跟踪算法的结果对更新顺序敏感的问题,该文提出一种多传感器自适应量测迭代更新GM-PHD跟踪算法AIU-GM-PHD。首先基于多传感器融合一致性度量,提出一种用于在线评估各传感器跟踪结果质量的方法;然后对多传感器迭代融合顺序进行优化,最后构建相应的多传感器GM-PHD融合跟踪算法。为了解决多传感器自适应顺序迭代融合无法体现传感器质量差距的问题,提出了一种自适应带权伪量测迭代更新GM-PHD跟踪算法PAIU-GM-PHD。仿真结果表明,与常规多传感器迭代更新GM-PHD跟踪算法相比,所提算法能够获得鲁棒性更好、精度更高的跟踪结果。
  • 图  1  GM-PHD量测迭代更新流程图

    图  2  AIU-GM-PHD算法框架图

    图  3  场景1两种融合顺序的OSPA对比图和目标数目估计对比图

    图  4  场景2两种融合顺序的OSPA对比图和目标数目估计对比图

    图  5  场景1各算法的OSPA对比图和目标数目估计对比图

    图  6  场景2各算法的OSPA对比图和目标数目估计对比图

    图  7  场景3各算法的OSPA对比图和目标数目估计对比图

    表  1  实验1场景设置

    检测概率杂波数量
    场景1$p_d^1 = 0.95,{\text{ } }p_d^2 = 0.85,{\text{ } }p_d^3 = 0.75,{\text{ } }p_d^4 = 0.65$${\lambda _1} = 2,0{\text{ } }{\lambda _2} = 20,{\text{ } }{\lambda _3} = 20,{\text{ } }{\lambda _4} = 20$
    场景2$p_d^1 = 0.90,{\text{ } }p_d^2 = 0.90,{\text{ } }p_d^3 = 0.90,{\text{ } }p_d^4 = 0.90$${\lambda _1} = 20,{\text{ } }{\lambda _2} = 30,{\text{ } }{\lambda _3} = 40,{\text{ } }{\lambda _4} = 50$
    下载: 导出CSV

    表  2  实验2场景设置

    检测概率杂波数量
    场景1$p_{{d} }^1 = 0.95,{\text{ } }p_{{d} }^2 = 0.85,{\text{ } }p_{{d} }^3 = 0.75,{\text{ } }p_{{d} }^4 = 0.65$$ {\lambda _1} = 20,{\text{ }}{\lambda _2} = 20,{\text{ }}{\lambda _3} = 20,{\text{ }}{\lambda _4} = 20 $
    场景2${p}_{ {d} }^{1}=0.90,\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{}\text{ }{p}_{ {d} }^{2}=0.90,\text{ }{p}_{ {d} }^{3}=0.90,\text{ }{p}_{ {d} }^{4}=0.90\text{}\text{}$${\lambda _1} = 20,{\text{ }}{\lambda _2} = 30,{\text{ }}{\lambda _3} = 40,{\text{ }}{\lambda _4} = 50$
    场景3$p_{{d} }^1 = 0.95,{\text{ } }p_{{d} }^2 = 0.85,{\text{ } }p_{{d} }^3 = 0.75,{\text{ } }p_{{d} }^4 = 0.65$${\lambda _1} = 20,{\text{ }}{\lambda _2} = 30,{\text{ }}{\lambda _3} = 40,{\text{ }}{\lambda _4} = 50$
    下载: 导出CSV

    表  3  场景1仿真结果

    算法OSPA精度目标数目估计(真实3)
    单传感器GM-PHD22.84122.5361
    RIU-GM-PHD15.65062.7581
    AIU-GM-PHD10.53692.9808
    PAIU-GM-PHD10.32823.0557
    MD-IC-PHD12.98692.4657
    下载: 导出CSV

    表  4  场景2仿真结果

    算法OSPA精度目标数目估计(真实3)
    单传感器GM-PHD22.84122.5361
    RIU-GM-PHD20.48432.4578
    AIU-GM-PHD13.46272.8301
    PAIU-GM-PHD12.28042.9288
    MD-IC-PHD8.18142.9336
    下载: 导出CSV

    表  5  场景3仿真数据

    算法OSPA精度目标数估计(真实3)
    单传感器GM-PHD24.30332.4351
    RIU-GM-PHD20.54652.4874
    AIU-GM-PHD13.68992.8429
    PAIU-GM-PHD12.71362.9526
    MD-IC-PHD19.08242.4410
    下载: 导出CSV

    表  6  3 种算法时间复杂度对比

    算法时间复杂度空间复杂度单帧时间消耗(s)
    RIU-GM-PHD$(2L - 1) \cdot O(n)$$O(d)$15.37
    AIU-GM-PHD$(2L - 1) \cdot O(n) + L \cdot O(s)$$O(d) + O(L)$19.02
    PAIU-GM-PHD$(2L - 1) \cdot O(n) + L \cdot (O(s) + O(j))$$O(d) + 2 \cdot O(L)$20.01
    下载: 导出CSV
  • [1] 杨威, 付耀文, 龙建乾, 等. 基于有限集统计学理论的目标跟踪技术研究综述[J]. 电子学报, 2012, 40(7): 1440–1448. doi: 10.3969/j.issn.0372-2112.2012.07.025

    YANG Wei, FU Yaowen, LONG Jianqian, et al. Research review of target tracking technology based on the theory of finite set statistics[J]. Acta Electronica Sinica, 2012, 40(7): 1440–1448. doi: 10.3969/j.issn.0372-2112.2012.07.025
    [2] 黄静琪, 胡琛, 孙山鹏, 等. 一种基于异步传感器网络的空间目标分布式跟踪方法[J]. 电子与信息学报, 2020, 42(5): 1132–1139. doi: 10.11999/JEIT190460

    HUANG Jingqi, HU Chen, SUN Shanpeng, et al. A distributed space target tracking algorithm based on asynchronous multi-sensor networks[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1132–1139. doi: 10.11999/JEIT190460
    [3] MA Ke, ZHANG Hanguang, WANG Rentao, et al. Target tracking system for multi-sensor data fusion[C]. The 2nd Information Technology, Networking, Electronic and Automation Control Conference, Chengdu, China, 2017: 1768–1772.
    [4] LIANG Shuang, ZHU Yun, LI Hao, et al. Nearest-neighbour joint probabilistic data association filter based on random finite set[C]. 2019 International Conference on Control, Automation and Information Sciences, Chengdu, China, 2019: 1–6.
    [5] BAR-SHALOM Y and TSE E. Tracking in a cluttered environment with probabilistic data association[J]. Automatica, 1975, 11(5): 451–460. doi: 10.1016/0005-1098(75)90021-7
    [6] VENUS A, LEITINGER E, TERTINEK S, et al. A message passing based adaptive PDA algorithm for robust radio-based localization and tracking[C]. 2021 IEEE Radar Conference (RadarConf21), Atlanta, USA, 2021: 1–6.
    [7] ANGLE R B, STREIT R L, and EFE M. A low computational complexity JPDA filter with superposition[J]. IEEE Signal Processing Letters, 2021, 28(1): 1031–1035. doi: 10.1109/LSP.2021.3082040
    [8] BAR-SHALOM Y, FORTMANN T E, and CABLE P G. Tracking and data association[J]. The Journal of the Acoustical Society of America, 1990, 87(2): 918–919. doi: 10.1121/1.398863
    [9] CARTHEL C, LENOACH J, CORALUPPI S, et al. Analysis of MHT and GBT approaches to disparate-sensor fusion[C]. The IEEE 23rd International Conference on Information Fusion, Rustenburg, South Africa, 2020: 1–7.
    [10] MORI S, CHONG C Y, WISHNER R P, et al. Multitarget multi sensor tracking problems: A general Bayesian approach[C]. 1983 American Control Conference, San Francisco, USA, 1983: 452–457.
    [11] LEUNG K Y K, INOSTROZA F, and ADAMS M. Relating random vector and random finite set estimation in navigation, mapping, and tracking[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4609–4623. doi: 10.1109/TSP.2017.2701330
    [12] SONG Yan, HU Jianwang, and JI Bing. A survey of PHD filtering method based on random finite set[C]. The 2nd International Conference on Mechatronics Engineering and Information Technology, Dalian, China, 2017: 199–204.
    [13] GARCÍA-FERNÁNDEZ Á F and MASKELL S. Continuous-discrete trajectory PHD and CPHD filters[C]. The IEEE 23rd International Conference on Information Fusion, Rustenburg, South Africa, 2020: 1–8.
    [14] CHOI M E and SEO S W. Robust multitarget tracking scheme based on Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4217–4229. doi: 10.1109/TVT.2015.2479363
    [15] GU Zihao, WANG Ping, and LIU Fuqiang. Cooperative vehicle tracking using SMC-PHD integrated with interacting multiple models[C]. 2020 IEEE MTT-S International Wireless Symposium, Shanghai, China, 2020: 1–3.
    [16] MA W K, VO B N, SINGH S S, et al. Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach[J]. IEEE Transactions on Signal Processing, 2006, 54(9): 3291–3304. doi: 10.1109/TSP.2006.877658
    [17] DA Kai, LI Tiancheng, ZHU Yongfeng, et al. Recent advances in multisensor multitarget tracking using random finite set[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(1): 5–24. doi: 10.1631/FITEE.2000266
    [18] XU Jian, HUANG Fangming, and HUANG Zhilinag. The multi-sensor PHD filter: Analytic implementation via Gaussian mixture and effective binary partition[C]. The 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 945–952.
    [19] 熊伟, 顾祥岐, 徐从安, 等. 多编队目标先后出现时的无先验信息跟踪方法[J]. 电子与信息学报, 2020, 42(7): 1619–1626. doi: 10.11999/JEIT190508

    XIONG Wei, GU Xiangqi, XU Congan, et al. Tracking method without prior information when multi-group targets appear successively[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1619–1626. doi: 10.11999/JEIT190508
    [20] MEYER F, KROPFREITER T, WILLIAMS J L, et al. Message passing algorithms for scalable multitarget tracking[J]. Proceedings of the IEEE, 2018, 106(2): 221–259. doi: 10.1109/JPROC.2018.2789427
    [21] HAN Shentu, QIAN Hanming, PENG Dongliang, et al. An unbalanced weighted sequential fusing multi-sensor GM-PHD algorithm[J]. Sensors, 2019, 19(2): 366. doi: 10.3390/s19020366
    [22] NAGAPPA S and CLARK D E. On the ordering of the sensors in the iterated-corrector probability hypothesis density (PHD) filter[C]. SPIE 8050, Signal Processing, Sensor Fusion, and Target Recognition XX, Orlando, USA, 2011: 80500M.
    [23] LIU Long, JI Hongbing, and FAN Zhenhua. Improved iterated-corrector PHD with Gaussian mixture implementation[J]. Signal Processing, 2015, 114: 89–99. doi: 10.1016/j.sigpro.2015.01.007
    [24] LIU Long, JI Hongbing, ZHANG Wenbo, et al. Multi-sensor fusion for multi-target tracking using measurement division[J]. IET Radar, Sonar & Navigation, 2020, 14(9): 1451–1461. doi: 10.1049/iet-rsn.2018.5567
    [25] 王宝树, 李芳社. 基于数据融合技术的多目标跟踪算法研究[J]. 西安电子科技大学学报, 1998, 25(3): 269–272. doi: 10.3969/j.issn.1001-2400.1998.03.001

    WANG Baoshu and LI Fangshe. The research on multiple targets tracking based on the data fusion technique[J]. Journal of Xidian University, 1998, 25(3): 269–272. doi: 10.3969/j.issn.1001-2400.1998.03.001
    [26] MAHLER R. Approximate multi sensor CPHD and PHD filters[C]. The 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8.
    [27] BEARD M, VO B T, and VO B N. OSPA(2): Using the OSPA metric to evaluate multi-target tracking performance[C]. 2017 International Conference on Control, Automation and Information Sciences, Chiang Mai, Thailand, 2017: 86–91.
    [28] STREIT R L. Poisson Point Process: Imaging, Tracking, and Sensing[M]. New York: Springer, 2010: 273–280.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  152
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-05-18
  • 录用日期:  2022-05-24
  • 网络出版日期:  2022-05-30
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回