高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于移位窗口多头自注意力U型网络的低照度图像增强方法

孙帮勇 赵兴运 吴思远 于涛

孙帮勇, 赵兴运, 吴思远, 于涛. 基于移位窗口多头自注意力U型网络的低照度图像增强方法[J]. 电子与信息学报, 2022, 44(10): 3399-3408. doi: 10.11999/JEIT211131
引用本文: 孙帮勇, 赵兴运, 吴思远, 于涛. 基于移位窗口多头自注意力U型网络的低照度图像增强方法[J]. 电子与信息学报, 2022, 44(10): 3399-3408. doi: 10.11999/JEIT211131
SUN Bangyong, ZHAO Xingyun, WU Siyuan, YU Tao. Low-light Image Enhancement Method Based on Shifted Window Multi-head Self-attention U-shaped Network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3399-3408. doi: 10.11999/JEIT211131
Citation: SUN Bangyong, ZHAO Xingyun, WU Siyuan, YU Tao. Low-light Image Enhancement Method Based on Shifted Window Multi-head Self-attention U-shaped Network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3399-3408. doi: 10.11999/JEIT211131

基于移位窗口多头自注意力U型网络的低照度图像增强方法

doi: 10.11999/JEIT211131
基金项目: 国家自然科学基金(62076199),陕西省重点研发计划(2021GY-027),中国科学院光谱成像技术重点实验室基金(LSIT201801D)
详细信息
    作者简介:

    孙帮勇:男,博士,副教授,研究方向为多光谱成像技术、计算机视觉

    赵兴运:男,硕士生,研究方向为计算机视觉、深度学习

    吴思远:男,硕士,工程师,研究方向为计算机视觉、光谱成像

    于涛:男,副研究员,博士生导师,研究方向为光谱成像技术

    通讯作者:

    于涛 yutao@opt.ac.cn

  • 中图分类号: TN911.73; TP391

Low-light Image Enhancement Method Based on Shifted Window Multi-head Self-attention U-shaped Network

Funds: The National Natural Science Foundation of China (62076199), The Key R&D Project of Shaan'xi Province (2021GY-027), The Key Laboratory of Spectral Imaging Technology of Chinese Academy of Sciences (LSIT201801D)
  • 摘要: 针对低照度图像增强模型中的亮度提升、噪声抑制以及保持纹理颜色一致性等难点问题,该文提出一种基于移位窗口自注意力机制的低照度图像增强方法。该文以U型结构为基本框架,以移位窗口多头自注意力模型为基础,构建了由编码器、解码器以及跳跃连接组成的图像增强网络。该网络将自注意力机制的特征提取优势应用到低照度图像增强领域,建立图像特征信息之间的长期依赖关系,能够有效获取全局特征。将所提方法与当前流行的算法进行定量和定性对比试验,主观感受上,该文方法显著提升了图像亮度,抑制图像噪声效果明显并较好地保持了纹理细节和颜色信息;在峰值信噪比(PSNR)、结构相似性(SSIM)和图像感知相似度(LPIPS)等客观指标方面,该方法较其他方法的最优值分别提高了0.35 dB, 0.041和0.031。实验结果表明,该文所提方法能够有效提升低照度图像的主观感受质量和客观评价指标,具有一定的应用价值。
  • 图  1  低照度图像成像模型

    图  2  数字成像过程

    图  3  低照度图像增强网络结构图

    图  4  移位窗口多头自注意力模块结构图

    图  5  不同算法处理后可视化结果

    图  6  不同编码器结构/损失函数系数处理后的可视化结果

    表  1  不同算法处理后客观评价指标结果图

    序号MBLLENRetinexNetKinDGLADNetSIEZero-DCE本文算法
    PSNR(dB)17.7316.4619.9519.5017.1318.5320.30
    SSIM0.7060.4940.8130.7560.7310.6590.854
    LPIPS0.2500.4410.1380.2400.2590.2340.107
    下载: 导出CSV

    表  2  不同编码器结构在测试集上客观评价指标

    编码器不同层中移位窗口
    自注意力模块数量
    PSNR(dB)SSIMLPIPS
    [2, 2, 2]19.490.8430.121
    [2, 2, 6]20.300.8540.107
    [2, 4, 6]20.100.8490.122
    下载: 导出CSV

    表  3  不同损失函数系数在测试集上客观评价指标

    损失函数系数PSNR
    (dB)
    SSIMLPIPS
    $ {\lambda _{\text{s}}} $=0.2, $ {\lambda _{\text{p}}} $=0.1, $ {\lambda _{\text{c}}} $=0.0520.180.8430.144
    $ {\lambda _{\text{s}}} $=0.15, $ {\lambda _{\text{p}}} $=0.05, $ {\lambda _{\text{c}}} $=0.02519.820.8300.158
    $ {\lambda _{\text{s}}} $=0.25, $ {\lambda _{\text{p}}} $=0.2, $ {\lambda _{\text{c}}} $=0.0520.300.8540.107
    下载: 导出CSV
  • [1] KIM W, JEONG J, and YOU J. Contrast enhancement using histogram equalization based on logarithmic mapping[J]. Optical Engineering, 2012, 51(6): 067002. doi: 10.1117/1.OE.51.6.067002
    [2] CELIK T. Spatial entropy-based global and local image contrast enhancement[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5298–5308. doi: 10.1109/TIP.2014.2364537
    [3] JOBSON D J, RAHMAN Z, and WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451–462. doi: 10.1109/83.557356
    [4] JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965–976. doi: 10.1109/83.597272
    [5] WANG Shuhang, ZHENG Jin, HU Haimiao, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538–3548. doi: 10.1109/TIP.2013.2261309
    [6] LI Mading, LIU Jiaying, YANG Wenhan, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828–2841. doi: 10.1109/TIP.2018.2810539
    [7] LORE K G, AKINTAYO A, and SARKAR S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650–662. doi: 10.1016/j.patcog.2016.06.008
    [8] WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep retinex decomposition for low-light enhancement[C]. 2018 British Machine Vision Conference, Newcastle, UK, 2018: 1–12.
    [9] ZHANG Yonghua, ZHANG Jiawan, and GUO Xiaojie. Kindling the darkness: A practical low-light image enhancer[C]. The 27th ACM International Conference on Multimedia, Nice, France, 2019: 1632–1640.
    [10] CHEN Chen, CHEN Qifeng, XU Jia, et al. Learning to see in the dark[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3291–3300.
    [11] WANG Ruixing, ZHANG Qing, FU C, et al. Underexposed photo enhancement using deep illumination estimation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6842–6850.
    [12] JIANG Yifan, GONG Xinyu, LIU Ding, et al. EnlightenGAN: Deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340–2349. doi: 10.1109/TIP.2021.3051462
    [13] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 2015: 234–241.
    [14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [15] LAI Weisheng, HUANG Jiabin, AHUJA N, et al. Fast and accurate image super-resolution with deep laplacian pyramid networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2599–2613. doi: 10.1109/TPAMI.2018.2865304
    [16] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    [17] JOHNSON J, ALAHI A, and LI F F. Perceptual losses for real-time style transfer and super-resolution[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 694–711.
    [18] LUO M R, CUI G, and RIGG B. The development of the CIE 2000 colour-difference formula: CIEDE2000[J]. Color Research and Application, 2001, 26(5): 340–350. doi: 10.1002/col.1049
    [19] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 586–595.
    [20] LV Feifan, LU Feng, WU Jianhua, et al. MBLLEN: Low-light image/video enhancement using CNNs[C]. 2018 British Machine Vision Conference, Newcastle, UK, 2018: 1–13.
    [21] WANG Wenjing, WEI Chen, YANG Wenhan, et al. GLADNet: Low-light enhancement network with global awareness[C]. The 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi'an, China, 2018: 751–755.
    [22] ZHANG Yu, DI Xiaoguang, ZHANG Bin, et al. Self-supervised image enhancement network: Training with low light images only[EB/OL]. https://arxiv.org/pdf/2002.11300.pdf, 2020.
    [23] GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1777–1786.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1048
  • HTML全文浏览量:  758
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 修回日期:  2021-12-03
  • 录用日期:  2021-12-07
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回