高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于导向矢量双层估计和协方差矩阵重构的稳健波束形成算法

吕岩 曹菲 杨剑 冯晓伟

吕岩, 曹菲, 杨剑, 冯晓伟. 基于导向矢量双层估计和协方差矩阵重构的稳健波束形成算法[J]. 电子与信息学报, 2022, 44(12): 4159-4167. doi: 10.11999/JEIT211120
引用本文: 吕岩, 曹菲, 杨剑, 冯晓伟. 基于导向矢量双层估计和协方差矩阵重构的稳健波束形成算法[J]. 电子与信息学报, 2022, 44(12): 4159-4167. doi: 10.11999/JEIT211120
LÜ Yan, CAO Fei, YANG Jian, FENG Xiaowei. Robust Beamforming Algorithm Based on Double-layer Estimation of Steering Vector and Covariance Matrix Reconstruction[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4159-4167. doi: 10.11999/JEIT211120
Citation: LÜ Yan, CAO Fei, YANG Jian, FENG Xiaowei. Robust Beamforming Algorithm Based on Double-layer Estimation of Steering Vector and Covariance Matrix Reconstruction[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4159-4167. doi: 10.11999/JEIT211120

基于导向矢量双层估计和协方差矩阵重构的稳健波束形成算法

doi: 10.11999/JEIT211120
基金项目: 国家自然科学基金(62071481),国家青年科学基金(61903375, 61501471)
详细信息
    作者简介:

    吕岩:男,博士生,研究方向为阵列雷达波束形成技术

    曹菲:女,教授,博士,研究方向为雷达信号处理与电子对抗

    杨剑:男,副教授,博士,研究方向为阵列雷达信号处理技术

    冯晓伟:男,副教授,博士,研究方向为雷达信号处理与机器学习

    通讯作者:

    吕岩 18699666472@163.com

  • 中图分类号: TN957.2

Robust Beamforming Algorithm Based on Double-layer Estimation of Steering Vector and Covariance Matrix Reconstruction

Funds: The National Natural Science Foundation of China (62071481), The National Science Foundation for Young Scientists of China (61903375, 61501471)
  • 摘要: 针对干扰加噪声协方差矩阵(INCM)重构过程中Capon功率谱(CPS)估计分辨率低的问题,该文提出两种稳健自适应波束形成(RAB)算法。该算法首先通过搜索CPS的峰值确定积分区间,然后对各区间积分所得的协方差矩阵进行特征值分解。通过合理设置判定门限确定区间内所含的入射信源数量,并将较大特征值所对应的特征向量作为信源导向矢量(SV)的初步估计。而后通过最大化估计功率的方法,在初步估计SV的正交空间内搜索其与真实SV之间的误差。该算法1利用最小特征值所对应的特征向量,向初步估计的SV中添加正交比例梯度,得到双层估计的SV。与算法1不同,算法2通过求解2次优化(QP)问题得到修正的SV。最后通过重构INCM获得阵列最优权值矢量。通过计算机仿真实验,验证了所提算法有效解决了CPS估计分辨率低的问题,较其他算法综合性能更优,具备更高的稳健性。
  • 图  1  线性阵列模型

    图  2  两种场景的CPS

    图  3  估计SV和真实SV的关系示意

    图  4  特征值分布

    图  5  波束图

    图  6  DOA随机误差的测试结果

    图  7  幅相误差的测试结果

    图  8  非相干局部散射的测试结果

    图  9  阵元位置扰动加DOA随机误差的测试结果

    表  1  所提算法步骤

    序号内容
    步骤 1利用式(13)计算CPS,并搜索CPS的峰值;
    步骤 2利用峰值确定积分区间,并使用式(17)计算区间积分;
    步骤 3利用式(18)特征值分解积分所得的矩阵,使用式(19)确定入射信号数量;
    步骤 4算法1利用式(20)构造一组SV,并计算最优SV;
    算法2利用式(23)求解误差向量,并计算最优SV;
    步骤 5利用式(21)和式(22)重构INCM,使用式(24)计算阵列权值矢量。
    下载: 导出CSV
  • [1] BISWAS R N, MITRA S K, and NASKAR M K. Wireless node localization under hostile radio environment using smart antenna[J]. Wireless Personal Communications, 2021, 116(3): 1815–1836. doi: 10.1007/s11277-020-07763-8
    [2] JAYAKRISHNAN V M and VIJAYAN D M. Performance analysis of smart antenna for marine communication[C]. The 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, 2020: 88–91.
    [3] GROSS F. Smart Antennas with MATLAB[M]. 2nd ed. New York: McGraw-Hill Education, 2015: 148–149.
    [4] KUHN E V, PITZ C A, MATSUO M V, et al. A kronecker product CLMS algorithm for adaptive beamforming[J]. Digital Signal Processing, 2021, 111: 102968. doi: 10.1016/j.dsp.2021.102968
    [5] 杨志伟, 张攀, 陈颖, 等. 导向矢量和协方差矩阵联合迭代估计的稳健波束形成算法[J]. 电子与信息学报, 2018, 40(12): 2874–2880. doi: 10.11999/JEIT180225

    YANG Zhiwei, ZHANG Pan, CHEN Ying, et al. Steering vector and covariance matrix joint iterative estimations for robust beamforming[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2874–2880. doi: 10.11999/JEIT180225
    [6] BYRNE D and CRADDOCK I J. Time-domain wideband adaptive beamforming for radar breast imaging[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1725–1735. doi: 10.1109/TAP.2015.2398125
    [7] FUKUE T, FUJITA A, and HAMADA N. Estimation of target position by the combination of MUSIC and adaptive beamforming in stepped-FM array radar[J]. IEICE Transactions on Information and Systems, 2015, E88-D(7): 1453–1456. doi: 10.1093/ietisy/e88-d.7.1453
    [8] 唐敏, 齐栋, 刘成城, 等. 基于多级阻塞的稳健相干自适应波束形成[J]. 电子与信息学报, 2019, 41(7): 1705–1711. doi: 10.11999/JEIT180332

    TANG Min, QI Dong, LIU Chengcheng, et al. New adaptive beamformer for coherent interference based on multistage blocking[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1705–1711. doi: 10.11999/JEIT180332
    [9] CHEN Pei, ZHAO Yongjun, and LIU Chengcheng. Robust adaptive beamforming using a low-complexity steering vector estimation and covariance matrix reconstruction algorithm[J]. International Journal of Antennas and Propagation, 2016, 2016: 2438183. doi: 10.1155/2016/2438183
    [10] ZHANG Ming, ZHANG Anxue, and YANG Qingqing. Robust adaptive beamforming based on conjugate gradient algorithms[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 6046–6057. doi: 10.1109/TSP.2016.2605075
    [11] 刘福来, 陈萍萍, 汪晋宽, 等. 基于多参数二次规划的零陷展宽和旁瓣控制方法[J]. 东北大学学报:自然科学版, 2012, 33(11): 1559–1562.

    LIU Fulai, CHEN Pingping, WANG Jinkuan, et al. Null broadening and sidelobe control method based on multiparametric quadratic programming[J]. Journal of Northeastern University:Natural Science, 2012, 33(11): 1559–1562.
    [12] LEE C C and LEE J H. Eigenspace-based adaptive array beamforming with robust capabilities[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(12): 1711–1716. doi: 10.1109/8.650188
    [13] GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289
    [14] GU Yujie, GOODMAN N A, HONG Shaohua, et al. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction[J]. Signal Processing, 2014, 96: 375–381. doi: 10.1016/j.sigpro.2013.10.009
    [15] YUAN Xiaolei and GAN Lu. Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction[J]. Signal Processing, 2017, 130: 233–242. doi: 10.1016/j.sigpro.2016.07.008
    [16] ZHENG Zhi, ZHENG Yan, WANG Wenqin, et al. Covariance matrix reconstruction with interference steering vector and power estimation for robust adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8495–8503. doi: 10.1109/TVT.2018.2849646
    [17] ZHANG Zhenyu, LIU Wei, LENG Wen, et al. Interference-plus-noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming[J]. IEEE Signal Processing Letters, 2016, 23(1): 121–125. doi: 10.1109/LSP.2015.2504954
    [18] SUN Sicong and YE Zhongfu. Robust adaptive beamforming based on a method for steering vector estimation and interference covariance matrix reconstruction[J]. Signal Processing, 2021, 182: 107939. doi: 10.1016/j.sigpro.2020.107939
    [19] ZHU Xingyu, YE Zhongfu, XU Xu, et al. Covariance matrix reconstruction via residual noise elimination and interference powers estimation for robust adaptive beamforming[J]. IEEE Access, 2019, 7: 53262–53272. doi: 10.1109/ACCESS.2019.2912402
    [20] YANG Jian, LU Jian, LIU Xinxin, et al. Robust null broadening beamforming based on covariance matrix reconstruction via virtual interference sources[J]. Sensors, 2020, 20(7): 1865. doi: 10.3390/s20071865
    [21] GRANT M, BOYD S, and YE Y. CVX: Matlab software for disciplined convex programming, version 2.2[EB/OL]. http://cvxr.com/cvx, 2020.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  750
  • HTML全文浏览量:  378
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 修回日期:  2021-12-18
  • 录用日期:  2021-12-27
  • 网络出版日期:  2022-01-13
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回