高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新型蝶形单元结构人工表面等离子体激元低通陷波滤波器的设计

李绪平 张佳翔 杨海龙 席晓莉

李绪平, 张佳翔, 杨海龙, 席晓莉. 基于新型蝶形单元结构人工表面等离子体激元低通陷波滤波器的设计[J]. 电子与信息学报, 2022, 44(4): 1327-1335. doi: 10.11999/JEIT211108
引用本文: 李绪平, 张佳翔, 杨海龙, 席晓莉. 基于新型蝶形单元结构人工表面等离子体激元低通陷波滤波器的设计[J]. 电子与信息学报, 2022, 44(4): 1327-1335. doi: 10.11999/JEIT211108
LI Xuping, ZHANG Jiaxiang, YANG Hailong, XI Xiaoli. Design of Spoof Surface Plasmon Polaritons Low Pass Notch Filter Based on Novel bow-tie cell Structure[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1327-1335. doi: 10.11999/JEIT211108
Citation: LI Xuping, ZHANG Jiaxiang, YANG Hailong, XI Xiaoli. Design of Spoof Surface Plasmon Polaritons Low Pass Notch Filter Based on Novel bow-tie cell Structure[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1327-1335. doi: 10.11999/JEIT211108

基于新型蝶形单元结构人工表面等离子体激元低通陷波滤波器的设计

doi: 10.11999/JEIT211108
基金项目: 陕西省自然科学基础研究计划(2021JQ-710, 2021GY-049, 2020GY-065),西安市科技计划研究项目(2021JH-06-0038),国防科工局稳定支持基金(HTK2020KL504016)
详细信息
    作者简介:

    李绪平:男,1981年生,高级工程师,主要研究方向为天线理论与新技术、超宽天线、超宽滤波器、天线阵列与射频一体化技术

    张佳翔:男,1997年生,硕士生,研究方向为超宽带人工表面等离子体滤波器

    杨海龙:男,1988年生,讲师,主要研究方向为超宽带天线、超宽带滤波器和射频一体化等

    席晓莉:女,1967年生,教授,主要研究方向为先进导航技术(陆基长波无线电导航技术、卫星导航技术及地磁导航技术)、电磁技术与应用、复杂媒质电磁问题的求解、电磁特性参数的获取及特殊功能及用途天线设计

    通讯作者:

    杨海龙 yanghl68@163.com

  • 中图分类号: TN713

Design of Spoof Surface Plasmon Polaritons Low Pass Notch Filter Based on Novel bow-tie cell Structure

Funds: The Natural Science Basic Research Program of Shaanxi (2021JQ-710, 2021GY-049, 2020GY-065), Xi’an Science and Technology Plan Project (2021JH-06-0038), The State Administration of Science, Technology and Industry for National Defence Public Project (HTK2020KL504016)
  • 摘要: 为降低滤波器的插入损耗以及实现滤波器的小型化,该文提出一种新型具有陷波功能的人工表面等离子体激元(SSPPs)低通滤波器,该滤波器主要由新型蝶形单元结构、过渡结构以及用于实现陷波功能的叉指电容环路谐振器(IDCLLR)结构组成。新型蝶形单元结构是由一个椭圆形贴片向左右方向旋转30°构成,经过镂空处理后可以显著降低插入损耗,相比传统的矩形和椭圆形结构具有更好的色散特性,大大提高了滤波器的带内的平坦度和带外抑制能力。该文对矩形、椭圆形、梯形以及新型蝶形等不同单元结构的色散曲线进行了分析,并仿真分析了滤波器的S21S11曲线,验证了新型蝶形单元结构在色散特性、插入损耗、低截止频率和带外抑制方面所具有的优势。最后,对该滤波器进行了加工和测试,测试结果表明,该滤波器仿真结果和测试结果吻合较好,表现出较好的带外抑制和带内平坦度,可以实现对特定干扰频段陷波抑制。滤波器尺寸为0.98λ0×0.17λ0。该人工表面等离子体激元滤波器从设计新型单元结构的角度出发,实现了良好性能的同时,实现了滤波器的小型化。
  • 图  1  不同单元结构的色散曲线图

    图  2  不同L4时蝶形单元结构的色散曲线

    图  3  蝶形单元结构不同旋转角度对色散曲线的影响

    图  4  不同单元结构的SSPPs低通滤波器模型及仿真结果图分析

    图  5  蝶形结构SSPPs低通滤波器结构图

    图  6  SSPPs低通滤波器仿真结果

    图  7  改进后SSPPs低通滤波器结构及仿真图

    图  8  电场分布图

    图  9  SSPPs低通陷波滤波器及叉指电容环路谐振器结构图

    图  10  不同枝节长度时SSPPs低通陷波滤波器S21参数仿真结果

    图  11  叉指电容环路谐振器数量不同时SSPPs低通陷波滤波器整体结构及S参数

    图  12  SSPPs低通陷波滤波器S参数仿真结果

    图  13  滤波器实物及现场测试情况

    图  14  滤波器S参数实测仿真结果对比

    表  1  蝶形单元结构尺寸

    dL4Wα
    4.38 mm1.6 mm0.66 mm30°
    下载: 导出CSV

    表  2  低通滤波器各部分尺寸(mm)

    L1L2L3ab1b2c1c2θ
    3.56.627.321.240.9462.81.115°
    下载: 导出CSV

    表  3  不同文献滤波器参数对比

    文献εr尺寸(λ0×λ0)–3dB带宽(GHz)插入损耗(dB)带外抑制(dB)
    [11]2.65 3×0.980~11.751.6–20
    [12]2.652.46×0.360~12.11.5–35
    [13]4.52.45×0.470~7.13–25
    [14]41.57×0.492.28~5.121.4–35
    本文2.650.98×0.170~12.50.9–52
    下载: 导出CSV

    表  4  叉指电容环路谐振器尺寸

    I1I2I3I4I5I6
    值(mm)2.0931.50.10.460.1
    下载: 导出CSV
  • [1] STEWART M E, ANDERTON C R, THOMPSON L B, et al. Nanostructured plasmonic sensors[J]. Chemical Reviews, 2008, 108(2): 494–521. doi: 10.1021/cr068126n
    [2] ZHAO Lei, ZHANG Xin, WANG Jun, et al. A novel broadband band-pass filter based on spoof surface plasmon polaritons[J]. Scientific Reports, 2016, 6(1): 36069. doi: 10.1038/srep36069
    [3] GRAMOTNEV D K and BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83–91. doi: 10.1038/nphoton.2009.282
    [4] FANG N, LEE H, SUN Cheng, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534–537. doi: 10.1126/science.1108759
    [5] FENG Wenjie and CHE Wenquan. Wideband filtering power dividers using single- and double-layer periodic spoof surface plasmon polaritons[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29(6): e21706. doi: 10.1002/mmce.21706
    [6] GARCIA-VIDAL F J, MARTÍN-MORENO L, and PENDRY J B. Surfaces with holes in them: New plasmonic metamaterials[J]. Journal of Optics A:Pure and Applied Optics, 2005, 7(2): S97–S101. doi: 10.1088/1464-4258/7/2/013
    [7] PENDRY J B, MARTÍN-MORENO L, and GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847–848. doi: 10.1126/science.1098999
    [8] SHEN Xiaopeng, CUI Tiejun, MARTIN-CANO D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 40–45. doi: 10.1073/pnas.1210417110
    [9] 汤文轩, 张浩驰, 崔铁军. 人工表面等离激元及其在微波频段的应用[J]. 电子与信息学报, 2017, 39(1): 231–239. doi: 10.11999/JEIT160692

    TANG Wenxuan, ZHANG Haochi, and CUI Tiejun. Spoof surface plasmon polariton and its applications to microwave frequencies[J]. Journal of Electronics &Information Technology, 2017, 39(1): 231–239. doi: 10.11999/JEIT160692
    [10] MA Huifeng, SHEN Xiaopeng, CHENG Qiang, et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons[J]. Laser & Photonics Reviews, 2014, 8(1): 146–151. doi: 10.1002/lpor.201300118
    [11] ZHANG Dawei, WU Qun, ZHANG Kuang, et al. Second-mode spoof surface plasmon polaritons based on complementary plasmonic metamaterials[C]. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, 2018: 2327–2328.
    [12] ZHANG Dawei, ZHANG Kuang, WU Qun, et al. Broadband propagation of high-order mode of spoof surface plasmon polaritons supported by compact complementary structure[C]. 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall), Xiamen, China, 2019: 177–181.
    [13] 朱登玮, 曾瑞敏, 唐泽恬, 等. 基于人工表面等离子体激元的多频带滤波器设计[J]. 激光与光电子学进展, 2020, 57(17): 172401. doi: 10.3788/Lop57.172401

    ZHU Dengwei, ZENG Ruimin, TANG Zetian, et al. Design of multiband filter based on spoof surface plasmon polaritons[J]. Laser &Optoelectronics Progress, 2020, 57(17): 172401. doi: 10.3788/Lop57.172401
    [14] PAN Leidan, WU Yongle, WANG Weimin, et al. A flexible high-selectivity single-layer coplanar waveguide bandpass filter using interdigital spoof surface plasmon polaritons of bow-tie cells[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3582–3588. doi: 10.1109/TPS.2020.3023441
    [15] WANG Meng, SUN Shi, MA Huifeng, et al. Supercompact and ultrawideband surface plasmonic bandpass filter[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(2): 732–740. doi: 10.1109/TMTT.2019.2952123
    [16] ZHANG Qian, ZHANG Haochi, YIN Jiayuan, et al. A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs[J]. Scientific Reports, 2016, 6(1): 28256. doi: 10.1038/srep28256
    [17] WANG Zhengxing, ZHANG Haochi, LU Jiayuan, et al. Compact filters with adjustable multi-band rejections based on spoof surface plasmon polaritons[J]. Journal of Physics D:Applied Physics, 2019, 52(2): 025107. doi: 10.1088/1361-6463/aae885
    [18] WANG Lili, CUI Xueqi, YANG Hailong, et al. Miniaturized spoof surface plasmon polaritons low-pass filter with a novel transition structure[J]. IEEE Photonics Technology Letters, 2019, 31(15): 1273–1276. doi: 10.1109/LPT.2019.2925509
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  1074
  • HTML全文浏览量:  538
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 修回日期:  2022-02-26
  • 录用日期:  2022-03-10
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回