高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏自编码器的混合信号符号检测研究

郝崇正 党小宇 李赛 王成华

郝崇正, 党小宇, 李赛, 王成华. 基于稀疏自编码器的混合信号符号检测研究[J]. 电子与信息学报, 2022, 44(12): 4204-4210. doi: 10.11999/JEIT211074
引用本文: 郝崇正, 党小宇, 李赛, 王成华. 基于稀疏自编码器的混合信号符号检测研究[J]. 电子与信息学报, 2022, 44(12): 4204-4210. doi: 10.11999/JEIT211074
HAO Chongzheng, DANG Xiaoyu, LI Sai, WANG Chenghua. Research on Symbol Detection of Mixed Signals Based on Sparse AutoEncoder Detector[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4204-4210. doi: 10.11999/JEIT211074
Citation: HAO Chongzheng, DANG Xiaoyu, LI Sai, WANG Chenghua. Research on Symbol Detection of Mixed Signals Based on Sparse AutoEncoder Detector[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4204-4210. doi: 10.11999/JEIT211074

基于稀疏自编码器的混合信号符号检测研究

doi: 10.11999/JEIT211074
基金项目: 国家自然科学基金(62031017, 61971221),中央高校基本科研业务费(NP2020104)
详细信息
    作者简介:

    郝崇正:男,博士生,研究方向为智能信号处理、调制识别和MIMO

    党小宇:男,博士,教授,研究方向为编码调制、深空通信、深度学习信号处理等

    李赛:男,博士生,研究方向为NOMA、无人机通信、信道测量等

    王成华:男,硕士,教授,研究方向为通信和信号处理系统设计、硬件安全与技术等

    通讯作者:

    党小宇 dang@nuaa.edu.cn

  • 中图分类号: TN911

Research on Symbol Detection of Mixed Signals Based on Sparse AutoEncoder Detector

Funds: The National Natural Science Foundation of China (62031017, 61971221), The Fundamental Research Funds for the Central Universities of China (NP2020104)
  • 摘要: 基于深度神经网络(DNN)的符号检测器(SD)的结构直接影响检测精度和计算复杂度,然而,已有的工作中并未对DNN符号检测器的结构选择方法开展研究。此外,已知的基于DNN的符号检测器复杂度较高且仅能完成单一调制信号的检测。针对以上问题,该文提出基于误符号率(SER)度量的低复杂度稀疏自编码器符号检测器(SAED)结构选择策略,同时,利用提出的累积量和矩特征向量(CMFV)实现了对混合信号的检测。所设计的符号检测器不依赖信道模型和噪声假设,对不同调制方式的信号具有较好的检测性能。仿真结果表明,该文设计的SAE符号检测器的SER性能接近最大似然(ML)检测理论值,且在频偏、相偏和有限训练样本等非理想条件下具有较强的鲁棒性。
  • 图  1  基于CMFV的混合信号符号检测模型框图

    图  2  SAED结构对符号检测性能的影响

    图  3  AWGN信道下BFSK和BPSK混合信号的SER性能曲线

    图  4  AWGN信道下16QAM和BFSK混合信号的SER性能曲线

    图  5  Rayleigh衰落信道下QPSK和16QAM混合信号的SER性能曲线

    表  1  基于SER度量的SAED结构选择策略

     输入: $({\boldsymbol{y} },{\boldsymbol{l} }),\rho ,\xi ,\zeta ,L,\varDelta ,\beta$
     输出:每个隐藏层的候选节点数目$N_i^{{\text{save}}}$
     (1)  $i \leftarrow 1$
     (2)  for ${N_i} = 1,2, \cdots ,L$ do
     (3)    根据式(3)—式(9)计算$\kappa _{{\text{SAED}}}^{{N_i}}$
     (4)  end for
     (5)  while $\min (\kappa _{ {\text{SAED} } }^{ {N_i} }) - {\kappa _t} > \varDelta$
     (6)    do ${N_i} = \mathop {\arg }\limits_{ {N_i} \in \left( {1,2, \cdots ,L} \right)} (\min (\kappa _{ {\text{SAED} } }^{ {N_i} }) + \beta )$
     (7)    $N_i^{{\text{save}}} \leftarrow {N_i}$
     (8)    $L = \max (N_i^{{\text{save}}})$
     (9)    $i = i + 1$
     (10)    for ${N_i} = 1,2, \cdots ,L - 1$ do
     (11)      根据式(3)—式(9)计算$\kappa _{{\text{SAED}}}^{{N_i}}$
     (12)    end for
     (13)  end while
    下载: 导出CSV

    表  2  SAED结构和参数配置

    结构/参数节点个数/数值
    输入层8
    隐藏层17
    隐藏层23
    Softmax层4,10,12
    稀疏系数$(\rho )$0.9
    稀疏惩罚权重$(\xi )$3
    权重衰减$(\zeta )$0.0001
    下载: 导出CSV

    表  3  SAED复杂度对比分析

    检测器类型节点数目乘法次数
    SD-DNN [15]1142${\rm{IP}}\sum\nolimits_{i = 1}^5 {N_i^{({\text{in} })}N_i^{({\text{out} })} }$
    SD-DenseNet [16]569${\rm{IP}}\sum\nolimits_{i = 1}^3 {N_i^{({\text{in} })}N_i^{({\text{out} })} }$
    SD-SAED30${\rm{IP}}({\alpha _1} + {\rho ^2}{\alpha _2} + \rho {\alpha _3})$
    下载: 导出CSV
  • [1] PROAKIS J G. Digital Communications[M]. New York: McGraw-Hill, 2001: 112–180.
    [2] MENG Fan, CHEN Peng, WU Lenan, et al. Automatic modulation classification: A deep learning enabled approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10760–10772. doi: 10.1109/TVT.2018.2868698
    [3] 郭晨, 简涛, 徐从安, 等. 基于深度多尺度一维卷积神经网络的雷达舰船目标识别[J]. 电子与信息学报, 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677

    GUO Chen, JIAN Tao, XU Congan, et al. Radar HRRP target recognition based on deep multi-scale 1D convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677
    [4] 唐伦, 周钰, 谭颀, 等. 基于强化学习的5G网络切片虚拟网络功能迁移算法[J]. 电子与信息学报, 2020, 42(3): 669–677. doi: 10.11999/JEIT190290

    TANG Lun, ZHOU Yu, TAN Qi, et al. Virtual network function migration algorithm based on reinforcement learning for 5G network slicing[J]. Journal of Electronics &Information Technology, 2020, 42(3): 669–677. doi: 10.11999/JEIT190290
    [5] FARSAD N and GOLDSMITH A. Neural network detection of data sequences in communication systems[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5663–5678. doi: 10.1109/TSP.2018.2868322
    [6] LIU Chang, WANG Jie, LIU Xuemeng, et al. Deep CM-CNN for spectrum sensing in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2306–2321. doi: 10.1109/JSAC.2019.2933892
    [7] O’SHEA T and HOYDIS J. An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 563–575. doi: 10.1109/TCCN.2017.2758370
    [8] ZHANG Min, LIU Zongyan, LI Li, et al. Enhanced efficiency BPSK demodulator based on one-dimensional convolutional neural network[J]. IEEE Access, 2018, 6: 26939–26948. doi: 10.1109/ACCESS.2018.2834144
    [9] SAMUEL N, DISKIN T, and WIESEL A. Learning to detect[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2554–2564. doi: 10.1109/TSP.2019.2899805
    [10] GAO Xuanxuan, JIN Shi, WEN Chaokai, et al. ComNet: Combination of deep learning and expert knowledge in OFDM receivers[J]. IEEE Communications Letters, 2018, 22(12): 2627–2630. doi: 10.1109/LCOMM.2018.2877965
    [11] GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Cambridge: MIT Press, 2016: 306–319.
    [12] BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006: 48–58.
    [13] SWAMI A and SADLER B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416–429. doi: 10.1109/26.837045
    [14] NIKIAS C L and MENDEL J M. Signal processing with higher-order spectra[J]. IEEE Signal Processing Magazine, 1993, 10(3): 10–37. doi: 10.1109/79.221324
    [15] YE Hao, LI G Y, and JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2018, 7(1): 114–117. doi: 10.1109/LWC.2017.2757490
    [16] DÖRNER S, CAMMERER S, HOYDIS J, et al. Deep learning based communication over the air[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 132–143. doi: 10.1109/JSTSP.2017.2784180
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  635
  • HTML全文浏览量:  201
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2022-02-28
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-03-09
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回