A Reconfgurable Transmitarray Based on Row-column Beamsteering Method
-
摘要: 为了简化可重构传输阵列(RTA)的控制电路,该文提出一种行-列分离控制的可重构传输阵列。该传输阵列由双层频率选择表面(FSS)组成。将变容二极管加载到FSS单元中,采用一种行-列分离的波束控制方法来调控RTA单元两侧直流电压(DC),每一条线路能够控制每一行或每一列单元。由于RTA单元调控相位能力有限,该文采用了一种相位修正的方法来减少RTA单元的相位误差。仿真结果表明:在方向图E面上,伴随着–1.7 dB增益波动,该RTA的最大扫描波束角度为39°,同时,在方向图H面上,伴随着–3 dB增益波动,该RTA的最大扫描波束角度达到了33°。所设计的RTA具有简单的控制电路和低成本等优点,可以应用于雷达系统和现代通信系统中。Abstract: In this paper, to simplify the control circuit of the Reconfigurable TransmitArray(RTA), a RTA based on row-column beamsteering method is proposed, which is composed of a double-layer Frequency Selective Surfaces(FSS). By tunning a capacitance value of the varactor intergrated in the frequency selective surface element, the RTA element can tune the transmission phase. At the same time, a row-column beamsteering method is used to tune a Direction Current (DC) bias voltage between the ports of the varactor, while a line can tune the DC bias voltage at each row elements or each column elements of the RTA. Due to the limited phase range of the RTA element, a phase-correction method is also utilized to reduce the elements phase error during 2-D beamscanning. The scanned beam results show that the scanned beam angle can reach 39° with –1.7 dB gain loss in E-plane and can reach 33° with –3 dB gain loss in H-plane. The RTA has the advantages of simple 2-D beam-steering circuit and low cost, the proposed RTA has great potential for radar system and modern communication system application.
-
表 1 10.4 GHz 处RTA扫描波束性能
$ \theta $(E面) Gain(dB) SLL(dB) $ \theta $(H面) Gain(dB) SLL(dB) 1° 17.6 –10.7 0° 17.8 –11.3 16° 16.9 –9.3 14° 17.3 –9.0 29° 16.2 –5.7 28° 16.7 –7.3 39° 15.9 –5.4 33° 14.8 –4.9 -
[1] 徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363 [2] RAO J B L, TRUNK G V, and PATEL D P. Two low-cost phased arrays[J]. IEEE Aerospace and Electronic Systems Magazine, 1997, 12(6): 39–44. doi: 10.1109/PAST.1996.565948 [3] VELJOVIC M and SKRIVERVIK A K. Ultralow-profile circularly polarized reflectarray antenna for CubeSat intersatellite links in K-band[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4588–4597. doi: 10.1109/TAP.2021.3060076 [4] TRAMPLER M E, LOVATO R E, and GONG Xun. Dual-resonance continuously beam-scanning X-band reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6080–6087. doi: 10.1109/TAP.2020.2989559 [5] GUO Lu, YU Huiting, CHE Wenquan, et al. A broadband reflectarray antenna using single-layer rectangular patches embedded with inverted l-shaped slots[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3132–3139. doi: 10.1109/TAP.2019.2900382 [6] YANG Shuyang, YAN Zehong, CAI Mingbo, et al. A high-efficiency double-layer transmitarray antenna using low-loss dual-linearly polarized elements[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2378–2382. doi: 10.1109/LAWP.2020.3033460 [7] YI Xiangjie, SU Tao, LI Xi, et al. A Double-layer wideband transmitarray antenna using two degrees of freedom elements around 20 GHz[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2798–2802. doi: 10.1109/TAP.2019.2893265 [8] YI Huan, QU Shiwei, NG K B, et al. Terahertz wavefront control on both sides of the cascaded metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 209–216. doi: 10.1109/TAP.2017.2772021 [9] DENG Ruyuan, XU Shenheng, YANG Fan, et al. An FSS-Backed Ku/Ka quad-band reflectarray antenna for satellite communications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4353–4358. doi: 10.1109/TAP.2018.2835725 [10] MENG Fanji and SHARMA S K. A wideband resonant cavity antenna with compact partially reflective surface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1155–1160. doi: 10.1109/TAP.2019.2938589 [11] AZIZ A, YANG Fan, XU Shenheng, et al. A high-gain dual-band and dual-polarized transmitarray using novel loop elements[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(6): 1213–1217. doi: 10.1109/LAWP.2019.2912645 [12] CHEN Ke, Feng Yijun, MONTICONE F, et al. A reconfigurable active Huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422 [13] ZHU Boo, CHEN Ke, JIA Nan, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface[J]. Scientific Reports, 2014, 4: 4971. doi: 10.1038/srep04971. [14] JIANG Tao, WANG Zhiyu, LI Dong, et al. Low-DC voltage-controlled steering-antenna radome utilizing tunable active metamaterial[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(1): 170–178. doi: 10.1109/TMTT.2011.2171981 [15] REIS J R, CALDEIRINHA R F S, HAMMOUDEH A, et al. Electronically reconfigurable FSS-inspired transmitarray for 2-D beamsteering[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4880–4885. doi: 10.1109/TAP.2017.2723087 [16] HUANG Cheng, PAN Wenbo, and LUO Xiangang. Low-loss circularly polarized transmitarray for beam steering application[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4471–4476. doi: 10.1109/TAP.2016.2586580 [17] HUANG Cheng, PAN Wenbo, MA Xiaoliang, et al. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801–4810. doi: 10.1109/TAP.2015.2479648 [18] LUO Chuanwei, ZHAO Gang, JIAO Yongchang, et al. Wideband 1 bit reconfigurable transmitarray antenna based on polarization rotation element[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(5): 798–802. doi: 10.1109/LAWP.2021.3063539 [19] WANG Yu, XU Shenheng, CAO Fan, et al. 1 bit dual-linear polarized reconfigurable transmitarray antenna using asymmetric dipole elements with parasitic bypass dipoles[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1188–1192. doi: 10.1109/TAP.2020.3005713 [20] LI Huan, MA Chao, ZHOU Tianyi, et al. Reconfigurable Fresnel lens based on an active second-order bandpass frequency-selective surface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(5): 4054–4059. doi: 10.1109/TAP.2019.2948392