高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进离散蝙蝠算法的无线Mesh网络部分重叠信道分配

叶方 孙雪 李一兵

叶方, 孙雪, 李一兵. 基于改进离散蝙蝠算法的无线Mesh网络部分重叠信道分配[J]. 电子与信息学报, 2022, 44(12): 4265-4273. doi: 10.11999/JEIT211029
引用本文: 叶方, 孙雪, 李一兵. 基于改进离散蝙蝠算法的无线Mesh网络部分重叠信道分配[J]. 电子与信息学报, 2022, 44(12): 4265-4273. doi: 10.11999/JEIT211029
YE Fang, SUN Xue, LI Yibing. Partial Overlapped Channel Assignment for Wireless Mesh Networks Based on Improved Discrete Bat Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4265-4273. doi: 10.11999/JEIT211029
Citation: YE Fang, SUN Xue, LI Yibing. Partial Overlapped Channel Assignment for Wireless Mesh Networks Based on Improved Discrete Bat Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4265-4273. doi: 10.11999/JEIT211029

基于改进离散蝙蝠算法的无线Mesh网络部分重叠信道分配

doi: 10.11999/JEIT211029
基金项目: 国家自然科学基金(51809056),先进船舶通信与信息技术工业信息化部重点实验室项目(AMCIT21V3)
详细信息
    作者简介:

    叶方:女,副教授,研究方向为认知对抗、智能决策

    孙雪:女,硕士生,研究方向为无线Mesh网络信道分配

    李一兵:男,教授,研究方向为通信信号处理、无线电导航与定位

    通讯作者:

    李一兵 liyibing0920@126.com

  • 中图分类号: TN915; TP393

Partial Overlapped Channel Assignment for Wireless Mesh Networks Based on Improved Discrete Bat Algorithm

Funds: The National Natural Science Foundation of China (51809056), The Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology (AMCIT21V3)
  • 摘要: 针对应急通信背景下无线Mesh网络(WMN)中存在的信道干扰和频谱资源利用不充分的问题,该文提出一种改进的离散蝙蝠算法(IDBA)用于求解最优部分重叠信道(POCs)分配方案。该方法采用K-means聚类算法优化网络拓扑,引入樽海鞘群的链式行为提高局部搜索能力,建立以最小化链路加权干扰为目标的线性规划模型来解决流量汇聚情况可能造成的网络瓶颈链路问题。仿真结果表明,在不同网络规模下,相比于其他基于群智能优化算法的信道分配方法,该方法具有较快的收敛速度和较优的搜索能力。此外,该方法能够在节点密集时显著降低网络干扰并保持网络的稳定性。
  • 图  1  WMN网络拓扑

    图  2  拓扑图与冲突图对应关系

    图  3  网络拓扑图

    图  4  网络冲突图

    图  5  不同节点数下收敛时间对比

    图  6  不同算法适应度收敛曲线对比

    图  7  不同节点数下全局干扰值对比

    图  8  不同节点数下网络吞吐量对比

    表  1  信道重叠度

    信道间隔$\tau $
    01234567~10
    重叠度${\text{od(}}x,y{\text{)}}$1.00000.72720.27140.03750.00540.00080.00020
    下载: 导出CSV

    表  2  蝙蝠位置编码示例

    编号
    1234
    链路${l_{ab}}$${l_{ac}}$${l_{bc}}$${l_{cd}}$
    信道85103
    $x_i^t$85103
    下载: 导出CSV

    表  3  信道分配过程

     输入:可用信道集${\mathbf{C}}$、节点和接口数量、初始脉冲率和初始响度等参数
     输出:最优信道分配方案、最小适应度值
     (1)根据网络结构生成随机网络拓扑图;根据干扰模型生成网络冲突图。
     (2)为蝙蝠种群随机分配公共信道并初始化速度,计算初始适应度并进行比较,最小者为当前全局最优解${ {{\rm{fitness}}} _{{\rm{bestz}}} }$。
     (3)根据式(17)更新频率,根据式(20)—式(23)更新种群的速度和位置。
     (4)产生一个(0,1)的随机数${\text{rand}}$,按照式(26)进行局部搜索产生新解,计算其适应度值${\text{fitnes}}{{\text{s}}_{{\text{new}}}}$。
     (5)产生一个(0,1)的随机数${\text{rand}}$,若${\text{rand}}$$ < {A_i}$且${\text{fitnes}}{{\text{s}}_{{\text{new}}}}$<${ {{\rm{fitness}}} _{{\rm{bestz}}} }$,则接受新解同时根据式(24)—式(25)增加${r_i}$,减小${A_i}$,否则保持个
      体不变。
     (6)按照适应度值排列种群中所有蝙蝠个体,适应度值最小者为当前最优解。
     (7)判断是否达到最大迭代次数,达到则结束循环,输出最优方案;否则返回步骤(3)。
    下载: 导出CSV

    表  4  仿真参数设置表

    仿真参数参数值
    传输范围250 m
    同信道干扰范围550 m
    路径损耗因子$k$2
    部分重叠信道数目11
    接口数目3
    节点发射功率15.6 dBm
    背景噪声–97 dBm
    初始脉冲率0.7
    初始响度1.6
    $\alpha $和$\varepsilon $因子0.8
    下载: 导出CSV

    表  5  不同算法总耗时对比(s)

    算法节点数量
    20253035404550
    DPSO0.7711.3032.8348.29318.79726.64748.032
    IDBA0.7751.9794.9849.76419.46029.31856.893
    CSA5.86521.62857.789226.368438.6331135.6471954.663
    BPIO7.54323.026135.038343.6071014.1421386.5373395.169
    下载: 导出CSV
  • [1] GHEISARI M, ALZUBI J, ZHANG Xioabo, et al. A new algorithm for optimization of quality of service in peer to peer wireless mesh networks[J]. Wireless Networks, 2020, 26(7): 4965–4973. doi: 10.1007/s11276-019-01982-z
    [2] KURT A, SAPUTRO N, AKKAY K, et al. Distributed connectivity maintenance in swarm of drones during post-disaster transportation applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 6061–6073. doi: 10.1109/TITS.2021.3066843
    [3] HONG Xiaoyan, GU Bo, HOQUE M, et al. Exploring multiple radios and multiple channels in wireless mesh networks[J]. IEEE Wireless Communications, 2010, 17(3): 76–85. doi: 10.1109/MWC.2010.5490982
    [4] LUO Yizhou and CHIN K W. Learning to bond in dense WLANs with random traffic demands[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11868–11879. doi: 10.1109/TVT.2020.3006218
    [5] MISHRA A, ROZNER E, BANERJEE S, et al. Exploiting partially overlapping channels in wireless networks: Turning a peril into an advantage[C]. The 5th ACM SIGCOMM Conference on Internet Measurement, Berkeley, USA, 2005: 29.
    [6] BOKHARI F S and ZÁRUBA G V. I-POCA: Interference-aware partially overlapping channel assignment in 802.11-based meshes[C]. 2013 IEEE 14th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), Madrid, Spain, 2013: 1–6.
    [7] LIU Kaiming, LI Nan, and LIU Yuanan. Min-interference and connectivity-oriented partially overlapped channel assignment for multi-radio multi-channel wireless mesh networks[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 84–88.
    [8] 张海波, 李虎, 陈善学, 等. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592

    ZHANG Haibo, LI Hu, CHEN Shanxue, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592
    [9] SELVAKUMAR K and REVATHY G. Escalating quality of services with channel assignment and traffic scheduling in wireless mesh networks[J]. Cluster Computing, 2019, 22(5): 11949–11955. doi: 10.1007/s10586-017-1528-6
    [10] 刘炜, 李东坤, 徐畅, 等. 应急通信网络中基于粒子群优化的信道分配算法[J]. 计算机科学, 2021, 48(5): 277–282. doi: 10.11896/jsjkx.200400042

    LIU Wei, LI Dongkun, XU Chang, et al. Channel assignment algorithm based on particle swarm optimization in emergency communication networks[J]. Computer Science, 2021, 48(5): 277–282. doi: 10.11896/jsjkx.200400042
    [11] TIAN Yi and YOSHIHIRO T. Traffic-demand-aware collision-free channel assignment for multi-channel multi-radio wireless mesh networks[J]. IEEE Access, 2020, 8: 120712–120723. doi: 10.1109/ACCESS.2020.3006275
    [12] ZHAO Xiongwen, ZHANG Siyuan, LI Liang, et al. A multi-radio multi-channel assignment algorithm based on topology control and link interference weight for a power distribution wireless mesh network[J]. Wireless Personal Communications, 2018, 99(1): 555–566. doi: 10.1007/s11277-017-5132-0
    [13] BACKHAUS M, ROSSBERG M, and SCHAEFER G. Towards a realistic maximum flow model in hybrid multi-channel wireless mesh networks[C]. 2021 Wireless Days (WD), Paris, France, 2021: 1–8.
    [14] YAN Qingran, MA Linhua, and SUN Jin. Novel bat algorithms for scheduling independent tasks in collaborative Internet-of-Things[C]. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Yanuca Island, Fiji, 2020: 674–681.
    [15] CHAUDHRY A U, HAFEZ R H M, and CHINNECK J W. On the impact of interference models on channel assignment in multi-radio multi-channel wireless mesh networks[J]. Ad Hoc Networks, 2015, 27: 68–80. doi: 10.1016/j.adhoc.2014.11.019
    [16] WANG Jihong, SHI Wenxiao, CUI Keqiang, et al. Partially overlapped channel assignment for multi-channel multi-radio wireless mesh networks[J]. EURASIP Journal on Wireless Communications and Networking, 2015, 2015(1): 25. doi: 10.1186/s13638-015-0259-8
    [17] 金凤. 无线Mesh网络部分重叠信道分配算法研究[D]. [硕士论文], 吉林大学, 2015.

    JIN Feng. Research on partially overlapped channel assignment for wireless Mesh networks[D]. [Master dissertation], Jilin University, 2015.
    [18] SUBBAIAH K V and NAIDU M M. An efficient interference aware channel allocation algorithm for wireless mesh networks[C]. 2015 International Conference on Signal Processing and Communication Engineering Systems, Guntur, India, 2015: 416–420.
    [19] MIRJALILI S, MIRJALILI S M, and YANG Xinshe. Binary bat algorithm[J]. Neural Computing and Applications, 2014, 25(3): 663–681. doi: 10.1007/s00521-013-1525-5
    [20] YANG Xinshe. A new metaheuristic bat-inspired algorithm[M]. GONZÁLEZ J R, PELTA D A, CRUZ C, et al. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin: Springer, 2010: 65–74.
    [21] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163–191. doi: 10.1016/j.advengsoft.2017.07.002
    [22] ALAM S, AQDAS N, QURESHI I M, et al. Joint power and channel allocation scheme for IEEE 802.11af based smart grid communication network[J]. Future Generation Computer Systems, 2019, 95: 694–712. doi: 10.1016/j.future.2019.01.027
    [23] 张达敏, 张绘娟, 闫威, 等. 异构网络中基于能效优化的D2D资源分配机制[J]. 电子与信息学报, 2020, 42(2): 480–487. doi: 10.11999/JEIT190042

    ZHANG Damin, ZHANG Huijuan, YAN Wei, et al. D2D resource allocation mechanism based on energy efficiency optimization in heterogeneous networks[J]. Journal of Electronics &Information Technology, 2020, 42(2): 480–487. doi: 10.11999/JEIT190042
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  195
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 修回日期:  2022-01-14
  • 录用日期:  2022-01-20
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回