Underwater Image Restoration Based on Background Light Corrected Image Formation Model
-
摘要: 光在水下传播时由于受到水体吸收和散射作用的影响,导致水下图像质量严重退化。为了有效去除色偏和模糊,改善水下图像质量,该文提出一种基于背景光修正成像模型的水下图像复原方法。该方法基于对雾天图像的观察,提出了水下图像背景光偏移假设,并基于此建立背景光修正成像模型;随后使用单目深度估计网络获得场景深度的估计,并结合背景光修正的水下成像模型,利用非线性最小二乘拟合获得水下偏移分量的估计值从而实现水下图像去水;最后优化去水后的含雾图像的透射率,并结合修正后的背景光实现图像复原。实验结果表明,该文方法在恢复水下图像颜色和去除散射光方面效果良好。Abstract: The underwater image quality is seriously degraded due to the effects of absorption and scattering when light propagates underwater. In order to remove color distortion and blur, and improve the quality of underwater image effectively, an underwater image restoration method based on background light corrected image formation model is proposed in this paper. Based on the observation of ground hazy images, the assumption of background light offset for underwater images is put forward, which is the cornerstone of the background light corrected image formation model. Then, a monocular depth estimation network is used to obtain the estimate of the scene depth. Combined with the background light corrected image formation model, the underwater offset component is obtained by non-linear least square fitting, so as to remove water from underwater images. Finally, the transmittance of hazy image after water removed is optimized and combined with the corrected background light to achieve image recovery. Experimental results show that the method works well in restoring the original color of underwater scenes and removing scattered light.
-
表 1 不同水体中各算法复原结果的CIEDE2000色差指标对比
表 2 各方法客观评价指标平均值比较
方法 低质量水下图像 低照度水下图像 AG IE UCIQE UIQM AG IE UCIQE UIQM 原图 6.4231 2.1744 0.4030 3.5151 6.0967 1.3027 0.4421 2.3293 文献[16] 6.9084 4.7642 0.5957 4.3580 6.8364 3.7480 0.5592 2.5836 文献[17] 7.3189 5.1387 0.6098 4.7196 7.2517 3.9023 0.5806 3.0269 文献[18] 7.2730 5.0059 0.5737 4.6711 6.4905 2.6523 0.5755 2.6256 文献[19] 7.0860 5.0510 0.5847 4.4900 6.9061 3.4108 0.5766 2.9130 本文算法 7.3238 5.1482 0.6280 4.6647 7.5311 4.2754 0.5724 3.0785 -
[1] LI Changli, TANG Shiqing, KWAN H K, et al. Color correction based on CFA and enhancement based on Retinex with dense pixels for underwater images[J]. IEEE Access, 2020, 8: 155732–155741. doi: 10.1109/ACCESS.2020.3019354 [2] 郭银景, 吴琪, 苑娇娇, 等. 水下光学图像处理研究进展[J]. 电子与信息学报, 2021, 43(2): 426–435. doi: 10.11999/JEIT190803GUO Yinjing, WU Qi, YUAN Jiaojiao, et al. Research progress on underwater optical image processing[J]. Journal of Electronics &Information Technology, 2021, 43(2): 426–435. doi: 10.11999/JEIT190803 [3] LIMARE N, LISANI J L, MOREL J M, et al. Simplest color balance[J]. Image Processing on Line, 2011, 1: 297–315. doi: 10.5201/ipol.2011.llmps-scb [4] JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale Retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965–976. doi: 10.1109/83.597272 [5] GIBSON J. Improving sea-thru with monocular depth estimation methods[EB/OL]. https://github.com/hainh/sea-thru/blob/master/report.tex, 2020. [6] HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168 [7] BERMAN D, LEVY D, AVIDAN S, et al. Underwater single image color restoration using haze-lines and a new quantitative dataset[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(8): 2822–2837. doi: 10.1109/TPAMI.2020.2977624 [8] AKKAYNAK D and TREIBITZ T. Sea-thru: A method for removing water from underwater images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Angeles, USA, 2019: 1682–1691. [9] PENG Y T, ZHAO Xiangyun, and COSMAN P C. Single underwater image enhancement using depth estimation based on blurriness[C]. 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, Canada, 2015: 4952–4956. [10] AKKAYNAK D and TREIBITZ T. A revised underwater image formation model[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6723–6732. [11] GODARD C, AODHA O M, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 3827–3837. [12] ZHAO Chaoqiang, SUN Qiyu, ZHANG Chongzhen, et al. Monocular depth estimation based on deep learning: An overview[J]. Science China Technological Sciences, 2020, 63(9): 1612–1627. doi: 10.1007/s11431-020-1582-8 [13] 蔡晨东, 霍冠英, 周妍, 等. 基于场景深度估计和白平衡的水下图像复原[J]. 激光与光电子学进展, 2019, 56(3): 031008.CAI Chendong, HUO Guanying, ZHOU Yan, et al. Underwater image restoration method based on scene depth estimation and white balance[J]. Laser &Optoelectronics Progress, 2019, 56(3): 031008. [14] BERMAN D, TREIBITZ T, and AVIDAN S. Single image dehazing using haze-lines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 720–734. doi: 10.1109/TPAMI.2018.2882478 [15] BERMAN D, TREIBITZ T, and AVIDAN S. Non-local image dehazing[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1674–1682. [16] ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color channel transfer for image dehazing[J]. IEEE Signal Processing Letters, 2019, 26(9): 1413–1417. doi: 10.1109/LSP.2019.2932189 [17] ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2018, 27(1): 379–393. doi: 10.1109/TIP.2017.2759252 [18] LI Chongyi, GUO Jichang, CONG Runmin, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664–5677. doi: 10.1109/TIP.2016.2612882 [19] 王丹, 张子玉, 赵金宝, 等. 基于场景深度估计的自然光照水下图像增强方法[J]. 机器人, 2021, 43(3): 364–372. doi: 10.13973/j.cnki.robot.200275WANG Dan, ZHANG Ziyu, ZHAO Jinbao, et al. An enhancement method for underwater images under natural illumination based on scene depth estimation[J]. Robot, 2021, 43(3): 364–372. doi: 10.13973/j.cnki.robot.200275 期刊类型引用(14)
1. 李海,李赞. 基于矩阵信息几何样本筛选下局域联合处理的低空风切变风速估计方法. 火控雷达技术. 2024(02): 1-8 . 百度学术
2. 温和,段崇棣,王伟伟,万贝,梁家乐,席子瑞. 基于相对马氏距离的非均匀杂波抑制方法. 空间电子技术. 2023(01): 53-57 . 百度学术
3. 石星宇,许述文,王晓峰,董烁烁. 复合高斯杂波下距离扩展目标斜对称自适应子空间检测器. 信号处理. 2023(06): 1036-1046 . 百度学术
4. 唐先慧,李东,粟嘉,程婉儒,任金芝,李秀琴. 基于AlexNet的自适应杂波智能抑制方法. 信号处理. 2020(12): 2032-2042 . 百度学术
5. 许华健,杨志伟,廖桂生,田敏. 一种稳健的非均匀杂波协方差矩阵估计方法. 电子与信息学报. 2017(05): 1036-1043 . 本站查看
6. 魏民,李小波,王理. 减小距离模糊影响的机载双基地雷达配置方法. 雷达学报. 2017(01): 106-113 . 百度学术
7. 魏民,李小波,黄中瑞. 机载双基地雷达杂波距离依赖补偿方法. 信号处理. 2017(01): 18-24 . 百度学术
8. 高志奇,陶海红,赵继超. 基于联合稀疏功率谱恢复的机载雷达稳健STAP算法研究. 电子学报. 2016(11): 2796-2801 . 百度学术
9. 张圣鹋,何子述,李军,赵翔. 一种稳健的知识辅助STAP色加载系数优化算法. 电子与信息学报. 2016(08): 1942-1949 . 本站查看
10. 刘汉伟,张永顺,王强,吴亿锋. 基于稀疏重构的机载雷达训练样本挑选方法. 系统工程与电子技术. 2016(07): 1532-1537 . 百度学术
11. 魏民,李小波,黄中瑞,王珽. 改进的最佳子集降维STAP方法. 信号处理. 2016(12): 1406-1411 . 百度学术
12. 刘家学,马涛,陈静杰. 基于RELAX算法的飞机油耗性能估计方法. 电光与控制. 2015(09): 101-105 . 百度学术
13. 吴亿锋,王彤,吴建新,代保全,同亚龙. 基于道路信息的知识辅助空时自适应处理. 电子与信息学报. 2015(03): 613-618 . 本站查看
14. 李海,郑景忠,周盟,吴仁彪. 基于压缩感知和三次相位变换的低复杂度空中机动目标参数估计. 电子与信息学报. 2015(11): 2697-2704 . 本站查看
其他类型引用(16)
-