高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硬件损伤的智能反射面辅助安全通信系统能效优化算法

高俊鹏 周继华 赵涛 徐勇军 赵瑞莉

高俊鹏, 周继华, 赵涛, 徐勇军, 赵瑞莉. 基于硬件损伤的智能反射面辅助安全通信系统能效优化算法[J]. 电子与信息学报, 2022, 44(7): 2349-2357. doi: 10.11999/JEIT210976
引用本文: 高俊鹏, 周继华, 赵涛, 徐勇军, 赵瑞莉. 基于硬件损伤的智能反射面辅助安全通信系统能效优化算法[J]. 电子与信息学报, 2022, 44(7): 2349-2357. doi: 10.11999/JEIT210976
GAO Junpeng, ZHOU Jihua, ZHAO Tao, XU Yongjun, ZHAO Ruili. Energy-efficient Algorithm for Intelligent Reflecting Surface-aided Secure Communication Systems with Hardware Impairments[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2349-2357. doi: 10.11999/JEIT210976
Citation: GAO Junpeng, ZHOU Jihua, ZHAO Tao, XU Yongjun, ZHAO Ruili. Energy-efficient Algorithm for Intelligent Reflecting Surface-aided Secure Communication Systems with Hardware Impairments[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2349-2357. doi: 10.11999/JEIT210976

基于硬件损伤的智能反射面辅助安全通信系统能效优化算法

doi: 10.11999/JEIT210976
基金项目: 国家自然科学基金(61601071, 62071078),国家重点研发计划(2019YFC1511300),重庆市自然科学基金 (cstc2019jcyj-xfkxX0002)
详细信息
    作者简介:

    高俊鹏:男,1988年生,博士生,研究方向为智能反射面、鲁棒资源分配等

    周继华:男,1979年生,研究员,博士生导师,研究方向为智能反射面、无线通信等

    赵涛:男,1983年生,研究员,硕士生导师,研究方向为智能反射面、移动网络等

    徐勇军:男,1986年生,副教授,硕士生导师,研究方向为异构无线网络、智能反射面、鲁棒资源分配等

    赵瑞莉:女,1990年生,博士生,研究方向为智能反射面、空天地一体化网络、空地融合车联网等

    通讯作者:

    周继华 jhzhou@ict.ac.cn

  • 1)本文优化合法用户的能效,而窃听者位置是在网络中随机分布的,并且潜藏在网路环境中,并不会与基站共享信息,所以基站不能获得窃听者的实际全部信息[17,20],此外,假设不考虑窃听者硬件损伤,即窃听者具有高质量的硬件,也是考虑优化合法用户最坏的情况[20]。因此本文忽略窃听者硬件损伤。
  • 中图分类号: TN929.5

Energy-efficient Algorithm for Intelligent Reflecting Surface-aided Secure Communication Systems with Hardware Impairments

Funds: The National Natural Science Foundation of China (61601071, 62071078), The National Key Research and Development Program (2019YFC1511300), The Natural Science Foundation of Chongqing (cstc2019jcyj-xfkxX0002)
  • 摘要: 为了克服阴影衰落和障碍物阻挡的影响,智能反射面(IRS)已经成为一种提高无线通信系统能量效率(EE)和降低硬件成本的有效技术。然而,传统无线资源分配(RA)算法忽略了系统收发机硬件损伤(HIs)的影响,由于放大器非线性、相位噪声的影响使得接收信号失真,从而使得这类算法的系统性能下降。为解决该问题,通过考虑收发机的硬件损伤和网络窃听者的影响,该文研究基于硬件损伤的IRS辅助安全通信系统能效优化问题。首先,基于基站的最大发射功率约束和用户的最小安全速率约束,建立一个含硬件损伤的能效最大资源优化问题。其次,采用辅助变量替换、半正定松弛以及Dinkelbach等方法,将原非凸问题转化为凸问题进行求解。最后,数值仿真结果表明,该算法与传统资源分配算法相比,合法用户的平均中断概率降低了43.5%,该算法中系统的安全能效提高了8.3%,因此,该算法具有较好的抗硬件损伤性和安全性。
  • 图  1  系统模型

    图  2  仿真安全通信场景

    图  3  系统能效收敛图

    图  4  不同算法下能效与最大发射功率的关系

    图  5  能效与最大发射功率在不同HIs因子以及算法下的关系

    图  6  能效与安全速率阈值在不同算法下的关系

    图  7  能效与智能反射面单元数量在不同算法下的关系

    图  8  中断概率与安全速率阈值在不同算法下的关系

    表  1  基于交替迭代的资源分配算法

     初始化系统参数:初始化相移矩阵${{\boldsymbol{F}}^{(0)} }$,设置初始迭代次数${\rm{iter}} = 1$,最大迭代次数${{\rm{iter}}^{({\rm{max}})} }$,初始能效值$ {\lambda ^{(0)}} $,初始化松弛辅助变量$ \bar q_l^{(0)} $,
     $\bar u_e^{(0)}$,收敛精度$\varepsilon = 1{0^{ - 4}}$。
     步骤1  for $ {\rm{iter }}= 1,2, \cdots ,{{\rm{iter}}^{({\rm{max}})}}$ do
     步骤2  根据给定相移矩阵F,系统能效值$\lambda $以及松弛辅助变量$\overline q_l $, $\overline u_e $。求解问题式(15)得到波束向量矩阵${\boldsymbol{W}}_l^{({\rm{iter}})} $,AN协方差矩阵
          ${{\boldsymbol{Z}}^{({\rm{iter}})}} $,以及松弛辅助变量$p_l^{({\rm{iter}})},q_l^{({\rm{iter}})},u_e^{({\rm{iter}})},c_{e,l}^{({\rm{iter}})},c_{e,l}^{({\rm{iter}})} $。
     步骤3  更新松弛变量$\overline q _l^{({\rm{iter}})} = q_l^{({\rm{iter}})} $, $\overline u _e^{({\rm{iter}})} = u_e^{({\rm{iter}})} $。
     步骤4    对${\boldsymbol{W}}_l^{({\rm{iter}})} $进行特征值分解${\boldsymbol{W}}_l^{({\rm{iter}})} = {\boldsymbol{U\varLambda}} {{\boldsymbol{U}}^{\rm{H}}} \$,以获得次优解${\boldsymbol{w}}_l^{({\rm{iter}})} = {\boldsymbol{U}}{{\boldsymbol{\varLambda}} ^{(1/2)}}{\boldsymbol{r}} $, ${\boldsymbol{r}} \sim {\rm{CN}}(0,{\boldsymbol{I}}) $。
     步骤5  根据波束向量${\boldsymbol{W}}_l^{({\rm{iter}})} $, AN协方差矩阵${{\boldsymbol{Z}}^{({\rm{iter}})}} $,以及松弛辅助变量$p_l^{({\rm{iter}})},\bar q_l^{({\rm{iter}})},\bar u_e^{({\rm{iter}})},c_{e,l}^{({\rm{iter}})},{F^{({\rm{iter}})}} $。求解系统能效值
          ${\lambda ^{({\rm{iter} })} } = \displaystyle\sum\limits_l {\frac{ {p_l^{({\rm{iter} })} - q_l^{({\rm{iter} })} - (u_e^{({\rm{iter} })} - c_{e,l}^{({\rm{iter} })})} }{ {(\mu (B) + {P^c}){\rm{ln}}2} } }$,目标函数$E_2^{({\rm{iter}})} $。
     步骤6    对${{\boldsymbol{F}}^{({\rm{iter}})}} $采用步骤4中的方法来求解${{\boldsymbol{f}}^{({\rm{iter}})}} $。
     步骤7    if $\frac{{|E_1^{({\rm{iter}} + 1)} - E_1^{({\rm{iter}})}|}}{{|E_1^{({\rm{iter}})}|}} \le \varepsilon $ and $\frac{ {|E_2^{({\rm{iter}} + 1)} - E_2^{({\rm{iter}})}|} }{ {|E_2^{({\rm{iter}})}|} } \le \varepsilon$ and $\frac{ {|{\lambda ^{({\rm{iter} } + 1)} } - {\lambda ^{({\rm{iter} })} }|} }{ {|{\lambda ^{({\rm{iter} })} }|} } \le\varepsilon$。
           break
        else
           iter = iter + 1。
           end
     步骤8    end
     步骤9  输出所需要的优化变量${\lambda ^*},{{\boldsymbol{f}}^*},{\boldsymbol{w}}_l^*,{{\boldsymbol{Z}}^*} $。
    下载: 导出CSV

    表  2  系统仿真参数

    参数参数
    N2M2
    $ \delta _l^2 $[8]–74 dBm${\delta ^2}$[8]–74 dBm
    $\mu $[15]$1$${P^c}$[15]10 dBm
    ${\xi _0}$–30 dBm$ {\delta ^2} $[8]–74 dBm
    $\varepsilon $10–4${P^{{\rm{max}}} }$30.8 dBm
    下载: 导出CSV
  • [1] 徐勇军, 刘子腱, 李国权, 等. 基于NOMA的无线携能D2D通信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175

    XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175
    [2] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [3] 徐勇军, 谷博文, 杨洋, 等. 基于不完美CSI的D2D通信网络鲁棒能效资源分配算法[J]. 电子与信息学报, 2021, 43(8): 2189–2198. doi: 10.11999/JEIT200587

    XU Yongjun, GU Bowen, YANG Yang, et al. Robust energy-efficient resource allocation algorithm in D2D communication networks with imperfect CSI[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2189–2198. doi: 10.11999/JEIT200587
    [4] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless networks[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [5] WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916
    [6] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
    [7] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897
    [8] ZHOU Fuhui, CHU Zheng, SUN Haijian, et al. Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(4): 918–931. doi: 10.1109/JSAC.2018.2824622
    [9] GUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685
    [10] FENG Biqian, WU Yongpeng, and ZHENG Mengfan. Secure transmission strategy for intelligent reflecting surface enhanced wireless system[C]. 11th International Conference On Wireless Communications and Signal Processing, Xi’an, China, 2019: 1–6.
    [11] ZHANG Jiayi, DAI Linglong, ZAHNG Xinlin, et al. Achievable rate of rician large-scale MIMO channels with transceiver hardware impairments[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 8800–8806. doi: 10.1109/TVT.2015.2504428
    [12] XING Zhe, WANG Rui, WU Jun, et al. Achievable rate analysis and phase shift optimization on intelligent reflecting surface with hardware impairments[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5514–5530. doi: 10.1109/TWC.2021.3068225
    [13] KHANSEFID A, Minn H, Zhan Qi, et al. Waveform parameter design and comparisons for millimeter-wave massive MIMO systems with RF distortions[C]. IEEE Globecom Workshops, Washington, USA, 2016: 1–6.
    [14] ZHANG Jiayi, XUE Xipeng, BJÖRNSON E, et al. Spectral efficiency of multipair massive MIMO two-way relaying with hardware impairments[J]. IEEE Wireless Communications Letters, 2018, 7(1): 14–17. doi: 10.1109/LWC.2017.2750162
    [15] ZHOU Shaoqing, XU Wei, WANG Kezhi, et al. Spectral and energy efficiency of IRS-assisted MISO communication with hardware impairments[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1366–1369. doi: 10.1109/LWC.2020.2990431
    [16] SHEN Hong, XU Wei, GONG Shulei, et al. Beamforming optimization for IRS-aided communications with transceiver hardware impairments[J]. IEEE Transactions on Communications, 2021, 69(2): 1214–1227. doi: 10.1109/TCOMM.2020.3033575
    [17] PAPAZAFEIROPOULOS A, PAN Cunhua, ELBIR A, et al. Asymptotic analysis of max-min weighted SINR for IRS-assisted MISO systems with hardware impairments[J]. IEEE Wireless Communications Letters, To be published.
    [18] YU Xianghao, XU Dongfang, SUN Ying, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637–2652. doi: 10.1109/JSAC.2020.3007043
    [19] XU Yongjun, XIE Hao, and HU R Q. Max-min beamforming design for heterogeneous networks with hardware impairments[J]. IEEE Communications Letters, 2021, 25(4): 1328–1332. doi: 10.1109/LCOMM.2020.3044936
    [20] ZHOU Gui, PAN Cunhua, REN Hong, et al. Secure wireless communication in RIS-aided MISO system with hardware impairments[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1309–1313. doi: 10.1109/LWC.2021.3064992
    [21] DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492–498. doi: 10.1287/mnsc.13.7.492
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  797
  • HTML全文浏览量:  462
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-12-21
  • 录用日期:  2021-12-28
  • 网络出版日期:  2022-01-13
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回