高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑负载均衡和用户体验的垂直切换算法

马彬 钟世林 谢显中 陈鑫

马彬, 钟世林, 谢显中, 陈鑫. 考虑负载均衡和用户体验的垂直切换算法[J]. 电子与信息学报, 2022, 44(12): 4218-4228. doi: 10.11999/JEIT210958
引用本文: 马彬, 钟世林, 谢显中, 陈鑫. 考虑负载均衡和用户体验的垂直切换算法[J]. 电子与信息学报, 2022, 44(12): 4218-4228. doi: 10.11999/JEIT210958
MA Bin, ZHONG Shilin, XIE Xianzhong, CHEN Xin. Vertical Handoff Algorithm Considering Load Balance and User Experience[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4218-4228. doi: 10.11999/JEIT210958
Citation: MA Bin, ZHONG Shilin, XIE Xianzhong, CHEN Xin. Vertical Handoff Algorithm Considering Load Balance and User Experience[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4218-4228. doi: 10.11999/JEIT210958

考虑负载均衡和用户体验的垂直切换算法

doi: 10.11999/JEIT210958
基金项目: 重庆市教委科学技术研究重大项目(KJZD-M201900602),重庆市教委科学技术研究重点项目(KJZD-M201800603),重庆市研究生科研创新项目(CYS21305)
详细信息
    作者简介:

    马彬:男,教授,博士生导师,研究方向为异构无线网络,认知无线电网络等

    钟世林:男,硕士生,研究方向为异构无线网络

    谢显中:男,教授,博士生导师,研究方向为无线和移动通信技术

    陈鑫:男,硕士生,研究方向为异构无线网络

    通讯作者:

    钟世林 zsl_cqupt@163.com

  • 中图分类号: TN915

Vertical Handoff Algorithm Considering Load Balance and User Experience

Funds: The Major Project of Science and Technology Research of Chongqing Education Commission (KJZD-M201900602), The Key Project of Science and Technology Research of Chongqing Education Commission (KJZD-M201800603), The Project of Science Research Innovation of Chongqing Graduate Students (CYS21305)
  • 摘要: 在超密集异构无线网络中,针对城区交通高峰期,大规模车载终端短时间聚集性移动引起的网络拥塞问题,该文提出一种考虑负载均衡和用户体验(LBUE)的垂直切换算法。首先,引入网络环境感知模型预测网络未来的拥塞程度,并提出一个融合自组织网络的网络架构,缓解网络拥塞。其次,定义业务适应度和负收益因子,并提出一种基于秩和比(RSR)的自适应切换判决算法,为用户筛选出当前环境下满意度最高的目标网络。实验结果表明,该算法能够有效降低终端接入网络的阻塞率和掉话率,实现网络间负载均衡并提升用户体验。
  • 图  1  算法流程示意图

    图  2  本文策略和传统策略对比

    图  3  基于秩和比的自适应切换判决算法

    图  4  城市核心区域异构无线网络仿真场景

    图  5  网络平均负载程度

    图  6  网络总吞吐量

    图  7  用户平均阻塞率

    图  8  接入终端掉话率

    图  9  不同业务类型终端接入各类网络的数量

    图  10  数据传输速率波动情况

    图  11  时间开销

    图  12  信令开销

    表  1  车辆自组织网络分簇算法

     输入:簇头集合$ {\text{ch}} $、车载终端集合$ {\text{vt}} $
     输出:各个簇的簇信息表(CIT)
     初始化:启动簇头上的无线信号收发器(RT);
     FORh $ {\text{ch}} $
       给每个簇头分配资源$ Rh $,并且簇头广播建簇的hello消息;
       FORi $ {\text{vt}} $
          按式(5)计算终端i与各个簇头之间的$ \beta $值,终端i向$ \beta $值最大的簇头发送request消息;
         该簇头解析出request消息携带的数据,并按照式(6)计算簇的剩余可用资源$ \psi h $;
         IF ($\xi i \lt \psi h$) 簇头向终端i发送ack消息,允许终端接入簇,并更新簇信息表;
         ELSE 簇头向终端i发送nack消息,拒绝终端接入簇;
         END
        END
       IF ($\psi h = 0$) 簇饱和,不允许接入新的簇节点;
       ELSE IF ($\psi h \equiv Rh$) 长时间没有簇节点接入簇,销毁簇,关闭RT;
        END
     END
    下载: 导出CSV

    表  2  网络仿真参数

    网络
    类型
    发射功率
    (dBm)
    损耗因子
    (dBm)
    覆盖半径
    (m)
    总带宽
    (MHz)
    资源块带宽
    (kHz)
    资源块价格
    (元/块)
    最大容量
    (台)
    5GM324610002020.25100
    5GS23563001520.320
    WLAN17582001020.215
    Ad Hoc175810042010
    其他网络中的干扰信号强度:I = –130+æ(x),æ(x)为服从参数为(0, σ2)的正态分布,其中σ2为10 dBm。视频通话的
    速率需求为300 kbps~2 Mbps,网页浏览的速率需求为20~400 kbps
    下载: 导出CSV
  • [1] CHAHAL M and HARIT S. Network selection and data dissemination in heterogeneous software-defined vehicular network[J]. Computer Networks, 2019, 161: 32–44. doi: 10.1016/j.comnet.2019.06.008
    [2] NDASHIMYE E, RAY S K, SARKAR N I, et al. Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: A survey[J]. Computer Networks, 2017, 112: 144–166. doi: 10.1016/j.comnet.2016.11.008
    [3] ROY S D and REDDY S R V. Signal strength ratio based vertical handoff decision algorithms in integrated heterogeneous networks[J]. Wireless Personal Communications, 2014, 77(4): 2565–2585. doi: 10.1007/s11277-014-1655-9
    [4] HAIDER A, GONDAL I, and KAMRUZZAMAN J. Dynamic dwell timer for hybrid vertical handover in 4G coupled networks[C]. The 73rd Vehicular Technology Conference, Budapest, Hungary, 2011: 1–5.
    [5] KUNARAK S and SULEESATHIRA R. Multi-criteria vertical handoff decision algorithm for overlaid heterogeneous mobile IP networks[J]. Journal of the Franklin Institute, 2020, 357(10): 6321–6351. doi: 10.1016/j.jfranklin.2020.03.025
    [6] PALAS R, ISLAM R, ROY P, et al. Multi-criteria handover mobility management in 5G cellular network[J]. Computer Communications, 2021, 174: 81–91. doi: 10.1016/j.comcom.2021.04.020
    [7] 马彬, 李尚儒, 谢显中. 异构无线网络中基于模糊逻辑的分级垂直切换算法[J]. 电子与信息学报, 2020, 42(3): 629–636. doi: 10.11999/JEIT190190

    MA Bin, LI Shangru, and XIE Xianzhong. A hierarchical vertical handover algorithm based on fuzzy logic in heterogeneous wireless networks[J]. Journal of Electronics &Information Technology, 2020, 42(3): 629–636. doi: 10.11999/JEIT190190
    [8] ZHU Anqi, GUO Songtao, LIU Bei, et al. Adaptive multiservice heterogeneous network selection scheme in mobile edge computing[J]. IEEE Internet of Things Journal, 2019, 6(4): 6862–6875. doi: 10.1109/JIOT.2019.2912155
    [9] ZINEB A B, AYADI M, and TABBANE S. QoE-based vertical handover decision management for cognitive networks using ANN[C]. The Sixth International Conference on Communications and Networking, Hammamet, Tunisia, 2017: 1–7.
    [10] LIANG Gen, YU Hewei, GUO Xiaoxue, et al. Joint access selection and bandwidth allocation algorithm supporting user requirements and preferences in heterogeneous wireless networks[J]. IEEE Access, 2019, 7: 23914–23929. doi: 10.1109/ACCESS.2019.2899405
    [11] MOLLEL M S, ABUBAKAR A I, OZTURK M, et al. Intelligent handover decision scheme using double deep reinforcement learning[J]. Physical Communication, 2020, 42: 101133. doi: 10.1016/j.phycom.2020.101133
    [12] YANG Feng, WU Wenjun, WANG Xiaoxi, et al. Deep reinforcement learning based handoff algorithm in end-to-end network slicing enabling HetNets[C]. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 2021: 1–7.
    [13] 朱豪, 彭艺, 张申, 等. 基于改进遗传算法的自适应越区切换方案[J]. 吉林大学学报:理学版, 2020, 58(1): 133–139. doi: 10.13413/j.cnki.jdxblxb.2019151

    ZHU Hao, PENG Yi, ZHANG Shen, et al. Adaptive handover scheme based on improved genetic algorithm[J]. Journal of Jilin University:Science Edition, 2020, 58(1): 133–139. doi: 10.13413/j.cnki.jdxblxb.2019151
    [14] AI Ning, WU Bin, LI Boyu, et al. 5G heterogeneous network selection and resource allocation optimization based on cuckoo search algorithm[J]. Computer Communications, 2021, 168: 170–177. doi: 10.1016/j.comcom.2020.12.026
    [15] ABDULSHAKOOR A I, ANANY M G, and ELMESALAWY M M. Outage-aware matching game approach for cell selection in LTE/WLAN Multi-RAT HetNets[J]. Computer Networks, 2020, 183: 107596. doi: 10.1016/j.comnet.2020.107596
    [16] ALHABO M, ZHANG Li, NAWAZ N, et al. Game theoretic handover optimisation for dense small cells heterogeneous networks[J]. IET Communications, 2019, 13(15): 2395–2402. doi: 10.1049/iet-com.2019.0383
    [17] WU Xiaoyan and DU Qinghe. Utility-function-based radio-access-technology selection for heterogeneous wireless networks[J]. Computers & Electrical Engineering, 2016, 52: 171–182. doi: 10.1016/j.compeleceng.2015.06.010
    [18] HAN Shen. Congestion-aware WiFi offload algorithm for 5G heterogeneous wireless networks[J]. Computer Communications, 2020, 164: 69–76. doi: 10.1016/j.comcom.2020.10.006
    [19] FENG Bing, ZHANG Chi, LIU Jianqing, et al. D2D communications-assisted traffic offloading in integrated cellular-WiFi networks[J]. IEEE Internet of Things Journal, 2019, 6(5): 8670–8680. doi: 10.1109/JIOT.2019.2922550
    [20] HASAN M and KWON S. Cluster-based load balancing algorithm for ultra-dense heterogeneous networks[J]. IEEE Access, 2019, 8: 2153–2162. doi: 10.1109/ACCESS.2019.2961949
    [21] ZHANG Qi, XU Xiaodong, ZHANG Jingxuan, et al. Dynamic load adjustments for small cells in heterogeneous ultra-dense networks[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6.
    [22] 潘甦, 张磊, 刘胜美. 基于未来负载预测的无线异构网络自适应负载均衡算法[J]. 系统工程与电子技术, 2015, 37(6): 1384–1390. doi: 10.3969/j.issn.1001-506X.2015.06.24

    PAN Su, ZHANG Lei, and LIU Shengmei. Adaptive load balancing algorithm based on future load predicting[J]. Systems Engineering and Electronics, 2015, 37(6): 1384–1390. doi: 10.3969/j.issn.1001-506X.2015.06.24
    [23] 张振浩, 梁俊, 肖楠, 等. 空天异构网络中基于Q学习的切换判决优化算法[J]. 计算机工程, 2018, 44(5): 296–302,308. doi: 10.19678/j.issn.1000-3428.0047111

    ZHANG Zhenhao, LIANG Jun, XIAO Nan, et al. Handoff decision optimized algorithm based on Q-learning approach for heterogeneous networks in aerospace[J]. Computer Engineering, 2018, 44(5): 296–302,308. doi: 10.19678/j.issn.1000-3428.0047111
    [24] WANG Lingxia, YANG Chungang, and HU R Q. Autonomous traffic offloading in heterogeneous ultra-dense networks using machine learning[J]. IEEE Wireless Communications, 2019, 26(4): 102–109. doi: 10.1109/MWC.2019.1800034
    [25] 肖清华. 基于负载匹配的LTE切换算法[J]. 邮电设计技术, 2017(6): 32–35. doi: 10.12045/j.issn.1007-3043.2017.06.007

    XIAO Qinghua. LTE handover algorithm based on matched cell load[J]. Designing Techniques of Posts and Telecommunications, 2017(6): 32–35. doi: 10.12045/j.issn.1007-3043.2017.06.007
    [26] 马彬, 毛步绚, 谢显中. 自组织异构网络中降低阻塞的垂直切换算法[J]. 北京邮电大学学报, 2019, 42(2): 19–24. doi: 10.13190/j.jbupt.2018-145

    MA Bin, MAO Buxuan, and XIE Xianzhong. Vertical handoff algorithm for reducing congestion in ad hoc heterogeneous network[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(2): 19–24. doi: 10.13190/j.jbupt.2018-145
    [27] JANGSHER S and LI V O K. Backhaul resource allocation for existing and newly arrived moving small cells[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3211–3219. doi: 10.1109/TVT.2016.2590502
    [28] 付学谦, 陈皓勇. 基于加权秩和比法的电能质量综合评估[J]. 电力自动化设备, 2015, 35(1): 128–132. doi: 10.16081/j.issn.1006-6047.2015.01.019

    FU Xueqian and CHEN Haoyong. Comprehensive power quality evaluation based on weighted rank sum ration method[J]. Electric Power Automation Equipment, 2015, 35(1): 128–132. doi: 10.16081/j.issn.1006-6047.2015.01.019
    [29] YU Hewei and ZHANG Biao. A heterogeneous network selection algorithm based on network attribute and user preference[J]. Ad Hoc Networks, 2018, 72: 68–80. doi: 10.1016/j.adhoc.2018.01.011
    [30] BHOSALE S and DARUWALA R. Multi-criteria vertical handoff decision algorithm using hierarchy modeling and additive weighting in an integrated WiFi/WiMAX/UMTS environment– a case study[J]. KSII Transactions on Internet and Information Systems, 2014, 8(1): 35–57. doi: 10.3837/tiis.2014.01.003
    [31] HUANG Zhangpeng, LIU Jing, SHEN Qiang, et al. A threshold-based multi-traffic load balance mechanism in LTE-A networks[C]. 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, USA, 2015: 1273–1278.
    [32] ALJERI N and BOUKERCHE A. Load balancing and QoS-aware network selection scheme in heterogeneous vehicular networks[C]. 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  640
  • HTML全文浏览量:  323
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 修回日期:  2021-12-10
  • 录用日期:  2021-12-13
  • 网络出版日期:  2021-12-26
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回