Research on Passive Millimeter-wave Stealth Technology Based on Active Cancellation for Armored Target
-
摘要: 目前,被动毫米波探测与制导技术已对装甲目标产生了极大的威胁。为提高装甲目标在未来战场的生存能力,该文提出一种基于有源对消的新型毫米波隐身方法。该方法通过装甲目标车载毫米波干扰机发射低功率噪声来降低目标与不同实战背景的辐射温度差,使得末敏弹毫米波辐射计无法探测识别出目标,从而实现其被动隐身功能。与传统基于外形、材料的无源隐身方法相比,该方法不仅可防护不同实战背景下的多种类型目标,还具有布设机动性强、工程实现简单等优点。最后实验结果表明:该方法可使实战环境下装甲目标对其正上方
$ {90^\circ} $ 立体空域内Ka波段、W波段末敏弹辐射计的隐身效能分别达到–20~–8 dB, –15~–8 dB,并且隐身效能较无源隐身方法也有一定的提升。Abstract: Armored target is currently great threatened by passive millimeter wave detection and guidance technology. An active cancellation millimeter-wave stealth method is proposed for enhancing the survivability of armored target in the future battlefield. By means of the low power noise from the millimeter wave jammer on armored target, the radiation temperature difference between target and background in practice is reduced. And then, the millimeter-wave radiometer in terminal-sensitive projectile could not detect and identify armored target so as to realize its passive stealth function. Compared to the traditional passive stealth methods based on shape and material, the proposed method can not only protect various types of targets under different backgrounds in action, but also has the advantages of strong mobility and simple engineering implementation. Finally, the experimental results demonstrate stealthy capability of armored target to Ka-band and W-band terminal-sensitive projectile radiometers above its 90° three-dimensional space can achieve –20~–8 dB and –15~–8 dB respectively, which it is also improved compared with the passive stealth methods. -
表 1 几种典型物质的辐射率
物质 W波段 Ka波段 金属(装甲目标) 0 0 水 0.63 0.63 干沙 0.83 0.86 沥青 0.98 0.98 草地 1.00 1.00 混凝土 0.92 0.92 表 2 干扰机发射功率理论设置值
背景 装甲目标与背景的辐射温度差$ \Delta {T_A} $(K) Ka波段干扰信号 W波段干扰信号 带宽(GHz) 功率(dBm) 带宽(GHz) 功率(dBm) 草地 170~230 10 –10.57~–9.26 10 –2.05~–0.74 砂石地 120~150 –12.09~–11.12 –3.57~–2.6 表 3 实验所用辐射计主要性能参数
名称 Ka波段辐射计 W波段辐射计 带宽(GHz) 4 4 灵敏度(K) 0.4 0.39 积分时间(ms) 0.19 0.21 射频增益(dB) 49 52 检波器效率(V/W) 8000 4500 视频放大器频带(Hz) 1790 1620 视频放大器增益(dB) 39 43 辐射计转速(r/s) 4 4 表 4 草地背景下装甲目标被动隐身实验结果
方位角(°) 探测角(°) W波段 Ka波段 U1 (mV) U2 (mV) 隐身效能(dB) U1 (mV) U2 (mV) 隐身效能(dB) 0 0 359.9 20.1 –12.53 1729.6 145.2 –10.76 15 359.9 20.2 –12.51 1729.6 –230.1 –8.76 30 359.9 10.9 –15.19 1729.6 212.6 –9.10 45 359.9 14.1 –14.07 1729.6 200.5 –9.36 90 0 359.9 –15.4 –13.69 1729.6 18.0 –19.83 15 359.9 22.6 –12.02 1729.6 –199.2 –9.39 30 359.9 53.4 –8.29 1729.6 178.6 –9.86 45 359.9 45.2 –9.01 1729.6 20.3 –19.30 180 0 359.9 17.2 –13.21 1729.6 –215.9 –9.04 15 359.9 –18.3 –12.94 1729.6 181.2 –9.80 30 359.9 43.7 –9.16 1729.6 105.7 –12.14 45 359.9 –22.6 –12.02 1729.6 173.2 –9.99 270 0 359.9 28.6 –11.00 1729.6 –238.4 –8.61 15 359.9 –19.2 –12.73 1729.6 207.9 –9.20 30 359.9 19.4 –12.68 1729.6 267.0 –8.11 45 359.9 17.4 –13.16 1729.6 231.1 –8.74 表 5 砂石地背景下装甲目标被动隐身实验结果
方位角(°) 探测角(°) W波段 Ka波段 U1 (mV) U2 (mV) 隐身效能(dB) U1 (mV) U2 (mV) 隐身效能(dB) 0 0 174.3 10.2 –12.33 838.3 135.2 –7.92 15 174.3 20.2 –9.36 838.3 30.1 –14.45 30 174.3 –10.9 –12.04 838.3 112.6 –8.72 45 174.3 –14.1 –10.92 838.3 100.5 –9.21 90 0 174.3 15.4 –10.54 838.3 18.0 –16.68 15 174.3 22.6 –8.87 838.3 –88.2 –9.78 30 174.3 28.1 –7.93 838.3 122.0 –8.37 45 174.3 –23.5 –8.70 838.3 –20.3 –16.16 180 0 174.3 17.2 –10.06 838.3 114.3 –8.65 15 174.3 18.3 –9.79 838.3 103.6 –9.08 30 174.3 13.7 –11.05 838.3 105.7 –8.99 45 174.3 22.6 –8.87 838.3 –36.7 –13.59 270 0 174.3 21.3 –9.13 838.3 –22.5 –15.71 15 174.3 19.2 –9.58 838.3 107.9 –8.90 30 174.3 –19.4 –9.53 838.3 112.0 –8.74 45 174.3 17.4 –10.01 838.3 131.1 –8.06 -
[1] ZHANG Hang, FENG Pengpeng, and YIN Ximei. Design of a servo attitude measuring device for an anti-terminal sensitive projectile weapon system[C]. IEEE 17th International Conference on Communication Technology, Chengdu, China, 2017: 1852–1855. [2] 杨杰, 张琪, 贺元吉, 等. 间断采样导致末敏弹大范围扫描盲区的消减对策[J]. 兵工学报, 2021, 42(7): 1353–1362. doi: 10.3969/j.issn.1000-1093.2021.07.002YANG Jie, ZHANG Qi, HE Yuanji, et al. Countermeasure to reduce the large scanning blind area of terminal sensitive projectile caused by interval sampling[J]. Acta Armamentarii, 2021, 42(7): 1353–1362. doi: 10.3969/j.issn.1000-1093.2021.07.002 [3] 姜云, 郭锐, 刘荣忠, 等. 末敏弹线阵列激光雷达的距离像分割方法[J]. 红外与激光工程, 2020, 49(1): 0126002. doi: 10.3788/IRLA202049.0126002JIANG Yun, GUO Rui, LIU Rongzhong, et al. Distance image segmentation method for terminal sensitive missile linear array laser radar[J]. Infrared and Laser Engineering, 2020, 49(1): 0126002. doi: 10.3788/IRLA202049.0126002 [4] 丁勇, 肖泽龙, 许建中, 等. 毫米波交流辐射计半实物仿真系统设计[J]. 兵工学报, 2015, 36(10): 1867–1874. doi: 10.3969/j.issn.1000-1093.2015.10.007DING Yong, XIAO Zelong, XU Jianzhong, et al. Design of millimeter wave radiometer hardware-in-the-loop simulation system[J]. Acta Armamentarii, 2015, 36(10): 1867–1874. doi: 10.3969/j.issn.1000-1093.2015.10.007 [5] 殷希梅, 冯鹏鹏. 末敏弹对抗技术现状及展望[J]. 探测与控制学报, 2017, 39(5): 1–6.YIN Ximei and FENG Pengpeng. Status and prospect of terminal sensitive projectile technology[J]. Journal of Detection &Control, 2017, 39(5): 1–6. [6] 李金梁, 王雪松, 李永祯, 等. 弹道中段无源轻诱饵的动力学特性分析[J]. 宇航学报, 2009, 30(6): 2127–2134. doi: 10.3873/j.issn.1000-1328.2009.06.013LI Jinliang, WANG Xuesong, LI Yongzhen, et al. Dynamics characteristics of light jamming in the midcourse of trajectory[J]. Journal of Astronautics, 2009, 30(6): 2127–2134. doi: 10.3873/j.issn.1000-1328.2009.06.013 [7] ZHOU Weiguang, LUO Jirun, JIA Yugui, et al. Performance evaluation of radar and decoy system counteracting antiradiation missile[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 2026–2036. doi: 10.1109/TAES.2011.5937280 [8] 陈曦, 陈自力, 许建中, 等. 基于波形诱骗的末敏弹毫米波有源干扰研究[J]. 兵工学报, 2014, 35(1): 49–54. doi: 10.3969/j.issn.1000-1093.2014.01.007CHEN Xi, CHEN Zili, XU Jianzhong, et al. Study of millimeter-wave active jamming based on waveform deception for terminal-sensitive projectiles[J]. Acta Armamentarii, 2014, 35(1): 49–54. doi: 10.3969/j.issn.1000-1093.2014.01.007 [9] 缪晨, 娄国伟, 李兴国. 3mm涂层隐身材料的天线温度模型[J]. 红外与毫米波学报, 2004, 23(3): 221–224. doi: 10.3321/j.issn:1001-9014.2004.03.016MIAO Chen, LOU Guowei, and LI Xingguo. Antenna temperature model of 3mm coating stealth material[J]. Journal of Infrared and Millimeter Waves, 2004, 23(3): 221–224. doi: 10.3321/j.issn:1001-9014.2004.03.016 [10] 聂建英, 李兴国, 娄国伟. 毫米波隐身材料主要参数的计算及误差分析[J]. 兵工学报, 2004, 25(6): 734–737. doi: 10.3321/j.issn:1000-1093.2004.06.018NIE Jianying, LI Xingguo, and LOU Guowei. Calculation and error analysis for the parameters of millimeter-wave absorbers[J]. Acta Armamentarii, 2004, 25(6): 734–737. doi: 10.3321/j.issn:1000-1093.2004.06.018 [11] 马若飞, 秦江. 末敏弹被动特性的干扰技术研究[J]. 甘肃科技, 2014, 30(6): 43–46,64. doi: 10.3969/j.issn.1000-0952.2014.06.017MA Ruofei and QIN Jiang. Research on jamming technology for the passive characteristic of terminal sensitive projectile[J]. Gansu Science and Technology, 2014, 30(6): 43–46,64. doi: 10.3969/j.issn.1000-0952.2014.06.017 [12] 郭明伟, 温云鹏, 仪名星. 高功率微波对抗末敏弹可行性分析[J]. 电子信息对抗技术, 2019, 34(1): 27–30,55. doi: 10.3969/j.issn.1674-2230.2019.01.007GUO Mingwei, WEN Yunpeng, and YI Mingxing. The feasibility analysis of terminal sensitive projectile countermeasure using high power microwave[J]. Electronic Information Warfare Technology, 2019, 34(1): 27–30,55. doi: 10.3969/j.issn.1674-2230.2019.01.007 [13] 谢文, 叶志红, 丁忠熙. 末敏弹射击效能分析[J]. 火力与指挥控制, 2021, 46(7): 62–65. doi: 10.3969/j.issn.1002-0640.2021.07.012XIE Wen, YE Zhihong, and DING Zhongxi. Analysis of firing efficiency for terminal sensitive projectile[J]. Fire Control &Command Control, 2021, 46(7): 62–65. doi: 10.3969/j.issn.1002-0640.2021.07.012 [14] 张生康. 毫米波辐射计前端研究[D]. [硕士论文], 电子科技大学, 2020.ZHANG Shengkang. Research on front ends of millimeter wave radiometers[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020. [15] 尚庆龙. 末敏弹毫米波探测器的干扰等效评估模型研究[D]. [博士论文], 南京理工大学, 2019.SHANG Qinglong. The jamming effect equivalent evaluation model for the millimeter wave detector of terminal-sensitive projectile[D]. [Ph. D. dissertation], Nanjing University of Science & Technology, 2019.