高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有源对消的装甲目标被动毫米波隐身技术研究

王文涛 黄家露

王文涛, 黄家露. 基于有源对消的装甲目标被动毫米波隐身技术研究[J]. 电子与信息学报, 2022, 44(12): 4178-4184. doi: 10.11999/JEIT210944
引用本文: 王文涛, 黄家露. 基于有源对消的装甲目标被动毫米波隐身技术研究[J]. 电子与信息学报, 2022, 44(12): 4178-4184. doi: 10.11999/JEIT210944
WANG Wentao, HUANG Jialu. Research on Passive Millimeter-wave Stealth Technology Based on Active Cancellation for Armored Target[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4178-4184. doi: 10.11999/JEIT210944
Citation: WANG Wentao, HUANG Jialu. Research on Passive Millimeter-wave Stealth Technology Based on Active Cancellation for Armored Target[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4178-4184. doi: 10.11999/JEIT210944

基于有源对消的装甲目标被动毫米波隐身技术研究

doi: 10.11999/JEIT210944
详细信息
    作者简介:

    王文涛:男,硕士,研究员,研究方向为毫米波干扰

    黄家露:男,博士,工程师,研究方向为毫米波干扰、非线性信号处理

    通讯作者:

    王文涛 wangwentao8987@163.com

  • 中图分类号: TN92

Research on Passive Millimeter-wave Stealth Technology Based on Active Cancellation for Armored Target

  • 摘要: 目前,被动毫米波探测与制导技术已对装甲目标产生了极大的威胁。为提高装甲目标在未来战场的生存能力,该文提出一种基于有源对消的新型毫米波隐身方法。该方法通过装甲目标车载毫米波干扰机发射低功率噪声来降低目标与不同实战背景的辐射温度差,使得末敏弹毫米波辐射计无法探测识别出目标,从而实现其被动隐身功能。与传统基于外形、材料的无源隐身方法相比,该方法不仅可防护不同实战背景下的多种类型目标,还具有布设机动性强、工程实现简单等优点。最后实验结果表明:该方法可使实战环境下装甲目标对其正上方$ {90^\circ} $立体空域内Ka波段、W波段末敏弹辐射计的隐身效能分别达到–20~–8 dB, –15~–8 dB,并且隐身效能较无源隐身方法也有一定的提升。
  • 图  1  末敏弹稳态扫描示意图

    图  2  典型毫米波辐射计原理框图

    图  3  被动毫米波隐身方法原理图

    图  4  3/8 mm波复合干扰机结构框图

    图  5  干扰机天线方向图

    图  6  实验场地布置示意图

    表  1  几种典型物质的辐射率

    物质W波段Ka波段
    金属(装甲目标)00
    0.630.63
    干沙0.830.86
    沥青0.980.98
    草地1.001.00
    混凝土0.920.92
    下载: 导出CSV

    表  2  干扰机发射功率理论设置值

    背景装甲目标与背景的辐射温度差$ \Delta {T_A} $(K)Ka波段干扰信号W波段干扰信号
    带宽(GHz)功率(dBm)带宽(GHz)功率(dBm)
    草地170~23010–10.57~–9.2610–2.05~–0.74
    砂石地120~150–12.09~–11.12–3.57~–2.6
    下载: 导出CSV

    表  3  实验所用辐射计主要性能参数

    名称Ka波段辐射计W波段辐射计
    带宽(GHz)44
    灵敏度(K)0.40.39
    积分时间(ms)0.190.21
    射频增益(dB)4952
    检波器效率(V/W)80004500
    视频放大器频带(Hz)17901620
    视频放大器增益(dB)3943
    辐射计转速(r/s)44
    下载: 导出CSV

    表  4  草地背景下装甲目标被动隐身实验结果

    方位角(°)探测角(°)W波段Ka波段
    U1 (mV)U2 (mV)隐身效能(dB)U1 (mV)U2 (mV)隐身效能(dB)
    00359.920.1–12.531729.6145.2–10.76
    15359.920.2–12.511729.6–230.1–8.76
    30359.910.9–15.191729.6212.6–9.10
    45359.914.1–14.071729.6200.5–9.36
    900359.9–15.4–13.691729.618.0–19.83
    15359.922.6–12.021729.6–199.2–9.39
    30359.953.4–8.291729.6178.6–9.86
    45359.945.2–9.011729.620.3–19.30
    1800359.917.2–13.211729.6–215.9–9.04
    15359.9–18.3–12.941729.6181.2–9.80
    30359.943.7–9.161729.6105.7–12.14
    45359.9–22.6–12.021729.6173.2–9.99
    2700359.928.6–11.001729.6–238.4–8.61
    15359.9–19.2–12.731729.6207.9–9.20
    30359.919.4–12.681729.6267.0–8.11
    45359.917.4–13.161729.6231.1–8.74
    下载: 导出CSV

    表  5  砂石地背景下装甲目标被动隐身实验结果

    方位角(°)探测角(°)W波段Ka波段
    U1 (mV)U2 (mV)隐身效能(dB)U1 (mV)U2 (mV)隐身效能(dB)
    00174.310.2–12.33838.3135.2–7.92
    15174.320.2–9.36838.330.1–14.45
    30174.3–10.9–12.04838.3112.6–8.72
    45174.3–14.1–10.92838.3100.5–9.21
    900174.315.4–10.54838.318.0–16.68
    15174.322.6–8.87838.3–88.2–9.78
    30174.328.1–7.93838.3122.0–8.37
    45174.3–23.5–8.70838.3–20.3–16.16
    1800174.317.2–10.06838.3114.3–8.65
    15174.318.3–9.79838.3103.6–9.08
    30174.313.7–11.05838.3105.7–8.99
    45174.322.6–8.87838.3–36.7–13.59
    2700174.321.3–9.13838.3–22.5–15.71
    15174.319.2–9.58838.3107.9–8.90
    30174.3–19.4–9.53838.3112.0–8.74
    45174.317.4–10.01838.3131.1–8.06
    下载: 导出CSV
  • [1] ZHANG Hang, FENG Pengpeng, and YIN Ximei. Design of a servo attitude measuring device for an anti-terminal sensitive projectile weapon system[C]. IEEE 17th International Conference on Communication Technology, Chengdu, China, 2017: 1852–1855.
    [2] 杨杰, 张琪, 贺元吉, 等. 间断采样导致末敏弹大范围扫描盲区的消减对策[J]. 兵工学报, 2021, 42(7): 1353–1362. doi: 10.3969/j.issn.1000-1093.2021.07.002

    YANG Jie, ZHANG Qi, HE Yuanji, et al. Countermeasure to reduce the large scanning blind area of terminal sensitive projectile caused by interval sampling[J]. Acta Armamentarii, 2021, 42(7): 1353–1362. doi: 10.3969/j.issn.1000-1093.2021.07.002
    [3] 姜云, 郭锐, 刘荣忠, 等. 末敏弹线阵列激光雷达的距离像分割方法[J]. 红外与激光工程, 2020, 49(1): 0126002. doi: 10.3788/IRLA202049.0126002

    JIANG Yun, GUO Rui, LIU Rongzhong, et al. Distance image segmentation method for terminal sensitive missile linear array laser radar[J]. Infrared and Laser Engineering, 2020, 49(1): 0126002. doi: 10.3788/IRLA202049.0126002
    [4] 丁勇, 肖泽龙, 许建中, 等. 毫米波交流辐射计半实物仿真系统设计[J]. 兵工学报, 2015, 36(10): 1867–1874. doi: 10.3969/j.issn.1000-1093.2015.10.007

    DING Yong, XIAO Zelong, XU Jianzhong, et al. Design of millimeter wave radiometer hardware-in-the-loop simulation system[J]. Acta Armamentarii, 2015, 36(10): 1867–1874. doi: 10.3969/j.issn.1000-1093.2015.10.007
    [5] 殷希梅, 冯鹏鹏. 末敏弹对抗技术现状及展望[J]. 探测与控制学报, 2017, 39(5): 1–6.

    YIN Ximei and FENG Pengpeng. Status and prospect of terminal sensitive projectile technology[J]. Journal of Detection &Control, 2017, 39(5): 1–6.
    [6] 李金梁, 王雪松, 李永祯, 等. 弹道中段无源轻诱饵的动力学特性分析[J]. 宇航学报, 2009, 30(6): 2127–2134. doi: 10.3873/j.issn.1000-1328.2009.06.013

    LI Jinliang, WANG Xuesong, LI Yongzhen, et al. Dynamics characteristics of light jamming in the midcourse of trajectory[J]. Journal of Astronautics, 2009, 30(6): 2127–2134. doi: 10.3873/j.issn.1000-1328.2009.06.013
    [7] ZHOU Weiguang, LUO Jirun, JIA Yugui, et al. Performance evaluation of radar and decoy system counteracting antiradiation missile[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 2026–2036. doi: 10.1109/TAES.2011.5937280
    [8] 陈曦, 陈自力, 许建中, 等. 基于波形诱骗的末敏弹毫米波有源干扰研究[J]. 兵工学报, 2014, 35(1): 49–54. doi: 10.3969/j.issn.1000-1093.2014.01.007

    CHEN Xi, CHEN Zili, XU Jianzhong, et al. Study of millimeter-wave active jamming based on waveform deception for terminal-sensitive projectiles[J]. Acta Armamentarii, 2014, 35(1): 49–54. doi: 10.3969/j.issn.1000-1093.2014.01.007
    [9] 缪晨, 娄国伟, 李兴国. 3mm涂层隐身材料的天线温度模型[J]. 红外与毫米波学报, 2004, 23(3): 221–224. doi: 10.3321/j.issn:1001-9014.2004.03.016

    MIAO Chen, LOU Guowei, and LI Xingguo. Antenna temperature model of 3mm coating stealth material[J]. Journal of Infrared and Millimeter Waves, 2004, 23(3): 221–224. doi: 10.3321/j.issn:1001-9014.2004.03.016
    [10] 聂建英, 李兴国, 娄国伟. 毫米波隐身材料主要参数的计算及误差分析[J]. 兵工学报, 2004, 25(6): 734–737. doi: 10.3321/j.issn:1000-1093.2004.06.018

    NIE Jianying, LI Xingguo, and LOU Guowei. Calculation and error analysis for the parameters of millimeter-wave absorbers[J]. Acta Armamentarii, 2004, 25(6): 734–737. doi: 10.3321/j.issn:1000-1093.2004.06.018
    [11] 马若飞, 秦江. 末敏弹被动特性的干扰技术研究[J]. 甘肃科技, 2014, 30(6): 43–46,64. doi: 10.3969/j.issn.1000-0952.2014.06.017

    MA Ruofei and QIN Jiang. Research on jamming technology for the passive characteristic of terminal sensitive projectile[J]. Gansu Science and Technology, 2014, 30(6): 43–46,64. doi: 10.3969/j.issn.1000-0952.2014.06.017
    [12] 郭明伟, 温云鹏, 仪名星. 高功率微波对抗末敏弹可行性分析[J]. 电子信息对抗技术, 2019, 34(1): 27–30,55. doi: 10.3969/j.issn.1674-2230.2019.01.007

    GUO Mingwei, WEN Yunpeng, and YI Mingxing. The feasibility analysis of terminal sensitive projectile countermeasure using high power microwave[J]. Electronic Information Warfare Technology, 2019, 34(1): 27–30,55. doi: 10.3969/j.issn.1674-2230.2019.01.007
    [13] 谢文, 叶志红, 丁忠熙. 末敏弹射击效能分析[J]. 火力与指挥控制, 2021, 46(7): 62–65. doi: 10.3969/j.issn.1002-0640.2021.07.012

    XIE Wen, YE Zhihong, and DING Zhongxi. Analysis of firing efficiency for terminal sensitive projectile[J]. Fire Control &Command Control, 2021, 46(7): 62–65. doi: 10.3969/j.issn.1002-0640.2021.07.012
    [14] 张生康. 毫米波辐射计前端研究[D]. [硕士论文], 电子科技大学, 2020.

    ZHANG Shengkang. Research on front ends of millimeter wave radiometers[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020.
    [15] 尚庆龙. 末敏弹毫米波探测器的干扰等效评估模型研究[D]. [博士论文], 南京理工大学, 2019.

    SHANG Qinglong. The jamming effect equivalent evaluation model for the millimeter wave detector of terminal-sensitive projectile[D]. [Ph. D. dissertation], Nanjing University of Science & Technology, 2019.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  220
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2022-05-23
  • 网络出版日期:  2022-05-31
  • 刊出日期:  2022-12-16

目录

    /

    返回文章
    返回