高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进深度生成对抗网络的心电信号重构算法

赵雅琴 孙蕊蕊 吴龙文 聂雨亭 何胜阳

赵雅琴, 孙蕊蕊, 吴龙文, 聂雨亭, 何胜阳. 基于改进深度生成对抗网络的心电信号重构算法[J]. 电子与信息学报, 2022, 44(1): 59-69. doi: 10.11999/JEIT210922
引用本文: 赵雅琴, 孙蕊蕊, 吴龙文, 聂雨亭, 何胜阳. 基于改进深度生成对抗网络的心电信号重构算法[J]. 电子与信息学报, 2022, 44(1): 59-69. doi: 10.11999/JEIT210922
ZHAO Yaqin, SUN Ruirui, WU Longwen, NIE Yuting, HE Shengyang. ECG Reconstruction Based on Improved Deep Convolutional Generative Adversarial Networks[J]. Journal of Electronics & Information Technology, 2022, 44(1): 59-69. doi: 10.11999/JEIT210922
Citation: ZHAO Yaqin, SUN Ruirui, WU Longwen, NIE Yuting, HE Shengyang. ECG Reconstruction Based on Improved Deep Convolutional Generative Adversarial Networks[J]. Journal of Electronics & Information Technology, 2022, 44(1): 59-69. doi: 10.11999/JEIT210922

基于改进深度生成对抗网络的心电信号重构算法

doi: 10.11999/JEIT210922
基金项目: 国家自然科学基金(61671185, 62071153)
详细信息
    作者简介:

    赵雅琴:女,1976年生,教授,研究方向为辐射源识别、辐射源个体识别、无源定位、光通信、医学信号处理

    孙蕊蕊:女,2002年生,硕士生,研究方向为时频分析和信号处理

    吴龙文:男,1988年生,工程师,研究方向为辐射源识别、辐射源个体识别、无源定位、多核学习和医学信号处理

    聂雨亭:女,1997年生,工程师,研究方向为时频分析、信号处理和医学信号处理

    何胜阳:男,1983年生,高级工程师,研究方向为无线光通信、嵌入式系统和算法加速

    通讯作者:

    吴龙文 wulongwen@hit.edu.cn

  • 中图分类号: TN911.72; R540.41

ECG Reconstruction Based on Improved Deep Convolutional Generative Adversarial Networks

Funds: The National Natural Science Foundation of China (61671185, 62071153)
  • 摘要: 心冲击图(BCG)信号中含有睡眠时期的心跳等生理参数,采用非接触式测量,但易受干扰影响应用受限;心电图(ECG)信号应用很广,但采用接触式测量,操作不便。为了实现非接触式测量并监测心电信号,该文将无参数尺度空间法(PSA)引入并与经验小波变换(EWT)算法结合,从BCG信号中分解得到心跳分量,结果表明所提分解方法能有效地从BCG信号中最大限度地分解出心跳信号;并在此基础上通过改进的深度卷积生成对抗网络(DCGAN)重构出ECG信号。实验结果表明,该文所提信号重构算法能从心跳分量重构恢复出ECG信号,均方根误差为–16.8422 dB。
  • 图  1  ECG波形图

    图  2  BCG波形图

    图  3  本文所提算法流程

    图  4  原始信号与实验信号

    图  5  不同分解方法下重构的心跳分量$h\left( t \right)$

    图  6  重构信号与去噪前后重构心跳信号对比图

    图  7  原频谱分割结果与优化合并后频谱分割结果

    图  8  使用改进EWT分解并重构心跳信号

    图  9  生成对抗网络框架

    图  10  生成器网络结构

    图  11  判别器网络结构

    图  12  使用GAN重构ECG信号

    图  13  DCGAN判别器网络结构

    图  14  DCGAN生成器网络结构

    图  15  使用DCGAN重构ECG信号

    图  16  使用改进DCGAN重构ECG信号

    图  17  实测BCG数据重构ECG

    表  1  不同分解方法下的心跳分量评价指标

    方法EMDVMD小波PSA-EWT
    相关系数0.15940.11870.39470.6590
    峭度3.56343.30303.404815.3154
    查全率0.04760.00000.55260.9512
    查准率0.04760.00000.87501.0000
    下载: 导出CSV

    表  2  不同方法下ECG信号重构结果对比

    GANDCGAN改进DCGAN
    相关系数0.97880.91350.9885
    均方根误差(dB)–15.5248–12.1443–16.8422
    下载: 导出CSV
  • [1] CHO J W and DUFFY J F. Sleep, sleep disorders, and sexual dysfunction[J]. The World Journal of Mens Health, 2019, 37(3): 261–275. doi: 10.5534/wjmh.180045
    [2] HIROTSU C, TUFIK S, and ANDERSEN M L. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions[J]. Sleep Science, 2015, 8(3): 143–152. doi: 10.1016/j.slsci.2015.09.002
    [3] HUNGIN A and CLOSE H. Sleep disturbances and health problems: Sleep matters[J]. British Journal of General Practice, 2010, 60(574): 319–320. doi: 10.3399/bjgp10X484147
    [4] ANKER S D, VON HAEHLING S, and GERMANY R. Sleep-disordered breathing and cardiovascular disease[J]. Indian Heart Journal, 2016, 68(S1): S69–S76. doi: 10.1016/j.ihj.2015.11.018
    [5] KRIEGER A C. Social and economic dimensions of sleep disorders[J]. Sleep Medicine Clinics, 2017, 12(1): i. doi: 10.1016/S1556-407X(16)30117-5
    [6] MOHSENIN V. Obstructive sleep apnea and hypertension: A critical review[J]. Current Hypertension Reports, 2014, 16(10): 482. doi: 10.1007/s11906-014-0482-4
    [7] PINHEIRO E, POSTOLACHE O, and GIRÃO P. Theory and developments in an unobtrusive cardiovascular system representation: Ballistocardiography[J]. The Open Biomedical Engineering Journal, 2010, 4(1): 201–216. doi: 10.2174/1874120701004010201
    [8] PAALASMAA J, TOIVONEN H, and PARTINEN M. Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(6): 1945–1952. doi: 10.1109/JBHI.2014.2314144
    [9] 方震, 白忠瑞, 陈贤祥, 等. 基于压电陶瓷传感器的非接触式精准逐拍心率提取方法研究[J]. 电子与信息学报, 2021, 43(5): 1472–1479. doi: 10.11999/JEIT200045

    FANG Zhen, BAI Zhongrui, CHEN Xianxiang, et al. Unconstrained accurate beat-to-beat heart rate extraction based on piezoelectric ceramics sensor[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1472–1479. doi: 10.11999/JEIT200045
    [10] PAALASMAA J and RANTA M. Detecting heartbeats in the ballistocardiogram with clustering[C]. The ICML/UAI/COLT 2008 Workshop on Machine Learning Health-Care Applications. Helsinki, Finland, 2008.
    [11] NAGURA M, MITSUKURA Y, KISHIMOTO T, et al. A practical BCG measuring system with bed sensors and algorithm for heartbeat detection[C]. 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan, 2018: 317–321.
    [12] SADEK I and BISWAS J. Nonintrusive heart rate measurement using ballistocardiogram signals: a comparative study[J]. Signal, Image and Video Processing, 2019, 13(3): 475–482. doi: 10.1007/s11760-018-1372-z
    [13] WANG Feng, TANAKA M, and CHONAN S. Development of a PVDF piezopolymer sensor for unconstrained in-sleep cardiorespiratory monitoring[J]. Journal of Intelligent Material Systems and Structures, 2003, 14(3): 185–190. doi: 10.1177/1045389X03014003006
    [14] 冯久超, 潘水洋. 基于经验模态分解的生命信号提取算法[J]. 华南理工大学学报:自然科学版, 2010, 30(10): 1–6. doi: 10.3969/j.issn.1000-565X.2010.10.001

    FENG Jiuchao and PAN Shuiyang. Extraction algorithm of vital signals based on empirical mode decomposition[J]. Journal of South China University of Technology:Natural Science Edition, 2010, 30(10): 1–6. doi: 10.3969/j.issn.1000-565X.2010.10.001
    [15] CAO Xinrong, GUO Hong, and TANG Jintian. Heart rate extraction of ballistocardiogram based on hilbert-huang transformation[J]. Chinese Journal of Biomedical Engineering, 2019, 28(3): 118–124.
    [16] 王春武, 程礼邦, 丁煜, 等. 基于脉搏的心冲击信号特征提取方法研究[J]. 微型机与应用, 2016, 35(22): 36–39. doi: 10.19358/j.issn.1674-7720.2016.22.010

    WANG Chunwu, CHENG Libang, DING Yu, et al. Ballistocardiogram signals feature extraction method based on pulse signals[J]. Microcomputers &Its Applications, 2016, 35(22): 36–39. doi: 10.19358/j.issn.1674-7720.2016.22.010
    [17] SADEK I, BISWAS J, ABDULRAZAK B, et al. Continuous and unconstrained vital signs monitoring with ballistocardiogram sensors in headrest position[C]. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, USA, 2017: 289–292.
    [18] 沈劲鹏, 王新安. 适用于床垫式生理信号监测系统的信号处理方法[J]. 北京大学学报:自然科学版, 2018, 54(5): 921–926. doi: 10.13209/j.0479-8023.2018.012

    SHEN Jinpeng and WANG Xin’an. Signal processing method for mattress-type physiological monitoring[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(5): 921–926. doi: 10.13209/j.0479-8023.2018.012
    [19] 姜星, 耿读艳, 张园园, 等. 基于EMD-ICA的心冲击信号降噪研究[J]. 中国生物医学工程学报, 2019, 38(2): 138–145. doi: 10.3969/j.issn.0258-8021.2019.02.002

    JIANG Xing, GENG Duyan, ZHANG Yuanyuan, et al. BCG signal de-noising method research based on EMD-ICA[J]. Chinese Journal of Biomedical Engineering, 2019, 38(2): 138–145. doi: 10.3969/j.issn.0258-8021.2019.02.002
    [20] 李倩, 王飞, 刘芊, 等. 心冲击图信号的采集和特征分析及其应用[J]. 中国医学物理学杂志, 2020, 37(198): 83–89. doi: 10.3969/j.issn.1005-202X.2020.01.017

    LI Qian, WANG Fei, LIU Qian, et al. Acquisition, feature analysis and application of ballistocardiogram signals[J]. Chinese Journal of Medical Physics, 2020, 37(198): 83–89. doi: 10.3969/j.issn.1005-202X.2020.01.017
    [21] 熊鹏, 刘学朋, 杜海曼, 等. 基于平稳和连续小波变换融合算法的心电信号P, T波检测[J]. 电子与信息学报, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049

    XIONG Peng, LIU Xuepeng, DU Haiman, et al. Detection of ECG Signal P and T wave based on stationary and continuous wavelet transform fusion[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1441–1447. doi: 10.11999/JEIT200049
    [22] 林金朝, 李必禄, 李国权, 等. 基于集合经验模态分解和信号结构分析的心电信号R波识别算法[J]. 电子与信息学报, 2021, 43(8): 2352–2360. doi: 10.11999/JEIT200915

    LIN Jinzhao, LI Bilu, LI Guoquan, et al. ElectroCardioGram R-wave recognition algorithm based on ensemble empirical mode decomposition and signal structure analysis[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2352–2360. doi: 10.11999/JEIT200915
    [23] GILLES J and HEAL K. A parameterless scale-space approach to find meaningful modes in histograms — Application to image and spectrum segmentation[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2014, 12(6): 1450044. doi: 10.1142/S0219691314500441
    [24] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622
    [25] RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv: 1511.06434, 2015.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  1431
  • HTML全文浏览量:  793
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2021-12-21
  • 录用日期:  2021-12-22
  • 网络出版日期:  2021-12-29
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回