高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的高分辨率食管测压图谱中食管收缩活力分类

贺福利 戴渝卓 李钊颖 粟日 曹聪 王姣菊 戴燎元 侯木舟 汪政

贺福利, 戴渝卓, 李钊颖, 粟日, 曹聪, 王姣菊, 戴燎元, 侯木舟, 汪政. 基于深度学习的高分辨率食管测压图谱中食管收缩活力分类[J]. 电子与信息学报, 2022, 44(1): 78-88. doi: 10.11999/JEIT210909
引用本文: 贺福利, 戴渝卓, 李钊颖, 粟日, 曹聪, 王姣菊, 戴燎元, 侯木舟, 汪政. 基于深度学习的高分辨率食管测压图谱中食管收缩活力分类[J]. 电子与信息学报, 2022, 44(1): 78-88. doi: 10.11999/JEIT210909
HE Fuli, DAI Yuzhuo, LI Zhaoying, SU Ri, CAO Cong, WANG Jiaoju, DAI Liaoyuan, HOU Muzhou, WANG Zheng. Deep Learned Esophageal Contraction Vigor Classification on High-resolution Manometry Images[J]. Journal of Electronics & Information Technology, 2022, 44(1): 78-88. doi: 10.11999/JEIT210909
Citation: HE Fuli, DAI Yuzhuo, LI Zhaoying, SU Ri, CAO Cong, WANG Jiaoju, DAI Liaoyuan, HOU Muzhou, WANG Zheng. Deep Learned Esophageal Contraction Vigor Classification on High-resolution Manometry Images[J]. Journal of Electronics & Information Technology, 2022, 44(1): 78-88. doi: 10.11999/JEIT210909

基于深度学习的高分辨率食管测压图谱中食管收缩活力分类

doi: 10.11999/JEIT210909
基金项目: 中南大学研究生创新研究基金(2020zzts362),湖南省自然科学基金(2020JJ4105)
详细信息
    作者简介:

    贺福利:男,1981年生,副教授,硕士研究生导师,研究方向为复分析、Clifford分析、Riemann Hilbert问题及其相关、数学建模与应用

    戴渝卓:女,1997年生,硕士生,研究方向为医疗大数据、医疗图像处理、推荐系统、信息探索、人工智能算法

    曹聪:男,1993年生,博士生,研究方向为医疗大数据、人工智能算法、统计优化、机器学习

    王姣菊:女,1995年生,博士生,研究方向为医疗图像处理、深度学习、生成式对抗网络

    侯木舟:男,1965年生,教授,博士研究生导师,研究方向为区块链技术及应用、医学临床大数据分析,图像与异常信号的分析与检测

    汪政:男,1975年生,博士生,研究方向为计算机视觉与图像处理

    通讯作者:

    侯木舟 houmuzhou@sina.com

  • 中图分类号: TN911.73

Deep Learned Esophageal Contraction Vigor Classification on High-resolution Manometry Images

Funds: Graduate Student Innovation Foundation of Central South University (2020zzts362), The Natural Science Foundation of Hunan Province (2020JJ4105)
  • 摘要: 高分辨率食管测压技术(HRM)作为检测食管动力障碍性疾病(EMD)的金标准,已广泛应用于临床试验以辅助医生进行诊断治疗。随着患病率的上升,HRM图像的数据量爆炸式增长,加之EMD的诊断流程较为复杂,临床上EMD误诊事件时有发生。为了提高EMD诊断的准确性,希望搭建一个计算机辅助诊断(Computer Aided Diagnosis, CAD)系统帮助医生对HRM图像进行自动分析。由于食管收缩活力的异常是诊断EMD的重要依据,该文提出了一个深度学习模型(PoS-ClasNet)以完成对HRM图像的食管收缩活力分类任务,为今后机器代替人工诊断EMD奠定基础。PoS-ClasNet作为一个多任务卷积神经网络(CNN)由PoSNet和S-ClasNet构成。前者用于HRM图像中吞咽框的检测和提取任务,后者根据食管吞咽特征鉴别收缩活力类型。实验使用了4000幅专家标记的HRM图像,用于训练、验证和测试的图像分别占比为70%, 20%和10%。在测试集上,食管收缩活力分类器PoS-ClasNet的分类准确率高达93.25%,精度和召回率分别为93.39%和93.60%。结果表明PoS-ClasNet能较好地适应HRM图像数据的特性,在智能诊断食管收缩活力的任务中表现出了不俗的准确性和稳健性。将它应用在临床上辅助医生诊疗,会带来巨大的社会效益。
  • 图  1  高分辨率食管测压图谱数据集

    图  2  食管收缩活力类型

    图  3  受噪声污染的HRM图像

    图  4  预处理前后的HRM图像

    图  5  PoS-ClasNet的模型结构图

    图  6  所有分类模型的分类准确率柱状图

    图  7  各网络模型的ROC曲线

    图  8  S-ClasNet的学习曲线

    图  9  测试集上的3类收缩活力分类的ROC曲线

    图  10  测试集上的混淆矩阵

    表  1  不同分类模型对食管收缩活力分类的结果比较(均值±标准差)

    Inceptionresnetv2Inceptionv3Resnet50XceptionS-ClasNet
    损失训练集0.2284±0.08300.2784±0.08900.3317±0.08060.2514±0.06410.2574±0.0574
    验证集0.2480±0.05350.2784±0.09400.3203±0.08250.2524±0.04210.2503±0.0429
    准确率训练集0.9148±0.03390.8965±0.03760.8733±0.03180.9056±0.02780.9015±0.0249
    验证集0.9138±0.02470.8988±0.05240.8945±0.02480.9157±0.01690.9122±0.0162
    精度训练集0.9185±0.03110.9009±0.03380.8776±0.02990.9093±0.02530.9040±0.0250
    验证集0.9162±0.02470.9023±0.05200.8990±0.02190.9191±0.01590.9143±0.0164
    召回率/敏感性训练集0.9102±0.03910.8906±0.04400.8673±0.03460.9004±0.03320.8980±0.0294
    验证集0.9112±0.02460.8948±0.05420.8911±0.02780.9121±0.01750.9104±0.0167
    F1得分训练集0.9137±0.03580.8949±0.04000.8717±0.03260.9041±0.03000.9005±0.0278
    验证集0.9133±0.02460.8980±0.05320.8944±0.02480.9151±0.01670.9121±0.0165
    特异性训练集0.9599±0.01430.9515±0.01490.9397±0.01400.9554±0.01120.9527±0.0106
    验证集0.9584±0.01240.9516±0.02540.9500±0.01070.9599±0.00790.9573±0.0082
    下载: 导出CSV

    表  2  S-ClasNet在测试集上对食管收缩活力分类的结果比较

    收缩活力分类评判指标
    准确率(%)精度(%)召回率(%)F1得分
    正常收缩97.2596.4895.800.9614
    弱收缩93.2590.3789.710.9004
    失收缩96.0092.6894.210.9344
    S-ClasNet93.2593.1893.240.9321
    下载: 导出CSV
  • [1] BOWERS S P. Esophageal motility disorders[J]. Surgical Clinics of North America, 2015, 95(3): 467–482. doi: 10.1016/j.suc.2015.02.003
    [2] ZAMBITO G, ROETHER R, KERN B, et al. Is barium esophagram enough? Comparison of esophageal motility found on barium esophagram to high resolution manometry[J]. The American Journal of Surgery, 2021, 221(3): 575–577. doi: 10.1016/j.amjsurg.2020.11.028
    [3] KUNIEDA K, FUJISHIMA I, WAKABAYASHI H, et al. Relationship between tongue pressure and pharyngeal function assessed using high-resolution manometry in older dysphagia patients with sarcopenia: A pilot study[J]. Dysphagia, 2021, 36(1): 33–40. doi: 10.1007/s00455-020-10095-1
    [4] 李飞, 王美峰, 汤玉蓉, 等. 《食管动力障碍的测压(第4版芝加哥分类)》更新点解读[J]. 中华消化杂志, 2021, 41(7): 492–497. doi: 10.3760/cma.j.cn311367-20210323-00173
    [5] PANDOLFINO J E, FOX M R, BREDENOORD A J, et al. High-resolution manometry in clinical practice: Utilizing pressure topography to classify oesophageal motility abnormalities[J]. Neurogastroenterology & Motility, 2009, 21(8): 796–806. doi: 10.1111/j.1365-2982.2009.01311.x
    [6] SAWADA A, GUZMAN M, NIKAKI K, et al. Identification of different phenotypes of esophageal reflux hypersensitivity and implications for treatment[J]. Clinical Gastroenterology and Hepatology, 2021, 19(4): 690–698.E2. doi: 10.1016/j.cgh.2020.03.063
    [7] KAHRILAS P J, BREDENOORD A J, FOX M, et al. The Chicago Classification of esophageal motility disorders, v3.0[J]. Neurogastroenterology & Motility, 2015, 27(2): 160–174. doi: 10.1111/nmo.12477
    [8] GYAWALI C P. High resolution manometry: The Ray Clouse legacy[J]. Neurogastroenterology & Motility, 2012, 24(S1): 2–4. doi: 10.1111/j.1365-2982.2011.01836.x
    [9] SCHMIDHUBER J. Deep learning in neural networks[J]. Neural Networks, 2015, 61: 85–117. doi: 10.1016/j.neunet.2014.09.003
    [10] LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [11] KOU Wenjun, CARLSON D A, BAUMANN A J, et al. A deep-learning-based unsupervised model on esophageal manometry using variational autoencoder[J]. Artificial Intelligence in Medicine, 2021, 112: 102006. doi: 10.1016/j.artmed.2020.102006
    [12] CARLSON D A, KOU Wenjun, ROONEY K P, et al. Achalasia subtypes can be identified with functional luminal imaging probe (FLIP) panometry using a supervised machine learning process[J]. Neurogastroenterology & Motility, 2021, 33(3): e13932. doi: 10.1111/nmo.13932
    [13] 侯晓华. 消化道高分辨率测压图谱[M]. 北京: 科学出版社, 2014.

    HOU Xiaohua. High Resolution Manometry in Digestive Tract[M]. Beijing: Science Press, 2014.
    [14] RENA Y. High-resolution esophageal manometry: Interpretation in clinical practice[J]. Current Opinion in Gastroenterology, 2017, 33(4): 301–309. doi: 10.1097/MOG.0000000000000369
    [15] BREDENOORD A J and SMOUT A J. High-resolution manometry of the esophagus: More than a colorful view on esophageal motility?[J]. Expert Review of Gastroenterology & Hepatology, 2007, 1(1): 61–69. doi: 10.1586/17474124.1.1.61
    [16] LI Zewen, LIU Fan, YANG Wenjie, et al. A survey of convolutional neural networks: Analysis, applications, and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems, To be published.
    [17] GU Jiuxiang, WANG Zhenhua, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 534–377. doi: 10.1016/j.patcog.2017.10.013
    [18] SARVAMANGALA D R and KULKARNI R V. Convolutional neural networks in medical image understanding: A survey[J]. Evolutionary Intelligence, 2021(4): 1–22. doi: 10.1007/s12065-020-00540-3
    [19] MOHAPATRA S, SWARNKAR T, and DAS J. Deep Convolutional Neural Network in Medical Image Processing[M]. BALAS V E, MISHRA B K, and KUMAR R. Handbook of Deep Learning in Biomedical Engineering. Amsterdam: Academic Press, 2021: 25–60.
    [20] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60–88. doi: 10.1016/j.media.2017.07.005
    [21] GREENSPAN H, VAN GINNEKEN B, and SUMMERS R M. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1153–1159. doi: 10.1109/TMI.2016.2553401
    [22] JANOWCZYK A and MADABHUSHI A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases[J]. Journal of Pathology Informatics, 2016, 7: 29. doi: 10.4103/2153-3539.186902
    [23] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    [24] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2014.
    [25] GIRSHICK R. Fast R-CNN[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [26] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [27] ZHANG Ziang, WU Chengdong, COLEMAN S, et al. DENSE-INception U-net for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 2020, 192: 105395. doi: 10.1016/j.cmpb.2020.105395
    [28] WANG Zheng, MENG Yu, WENG Futian, et al. An effective CNN method for fully automated segmenting subcutaneous and visceral adipose tissue on CT scans[J]. Annals of Biomedical Engineering, 2020, 48(1): 312–328. doi: 10.1007/s10439-019-02349-3
    [29] DROZDZAL M, VORONTSOV E, CHARTRAND G, et al. The importance of skip connections in biomedical image segmentation[C]. Proceedings of the 1st International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, Athens, Greece, 2016: 179–187.
    [30] IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
    [31] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1026–1034.
    [32] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2014.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  374
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-11-30
  • 录用日期:  2021-12-20
  • 网络出版日期:  2021-12-27
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回