高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于静态随机存取存储器的存内计算研究进展

蔺智挺 徐田 童忠瑱 吴秀龙 汪方铭 彭春雨 卢文娟 赵强 陈军宁

蔺智挺, 徐田, 童忠瑱, 吴秀龙, 汪方铭, 彭春雨, 卢文娟, 赵强, 陈军宁. 基于静态随机存取存储器的存内计算研究进展[J]. 电子与信息学报, 2022, 44(11): 4041-4057. doi: 10.11999/JEIT210896
引用本文: 蔺智挺, 徐田, 童忠瑱, 吴秀龙, 汪方铭, 彭春雨, 卢文娟, 赵强, 陈军宁. 基于静态随机存取存储器的存内计算研究进展[J]. 电子与信息学报, 2022, 44(11): 4041-4057. doi: 10.11999/JEIT210896
LIN Zhiting, XU Tian, TONG Zhongzhen, WU Xiulong, WANG Fangming, PENG Chunyu, LU Wenjuan, ZHAO Qiang, CHEN Junning. Research on Progress of Computing In-Memory Based on Static Random-Access Memory[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4041-4057. doi: 10.11999/JEIT210896
Citation: LIN Zhiting, XU Tian, TONG Zhongzhen, WU Xiulong, WANG Fangming, PENG Chunyu, LU Wenjuan, ZHAO Qiang, CHEN Junning. Research on Progress of Computing In-Memory Based on Static Random-Access Memory[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4041-4057. doi: 10.11999/JEIT210896

基于静态随机存取存储器的存内计算研究进展

doi: 10.11999/JEIT210896
基金项目: 国家重点研发计划(2018YFB2202602),国家自然科学基金 (61934005, 62074001, U19A2074)
详细信息
    作者简介:

    蔺智挺:男,教授,研究方向为集成电路设计、存内计算

    徐田:女,硕士生,研究方向为集成电路设计

    童忠瑱:男,硕士生,研究方向为集成电路设计

    吴秀龙:男,教授,研究方向为集成电路设计

    汪方铭:男,硕士生,研究方向为集成电路设计

    彭春雨:男,副教授,研究方向为高速低功耗静态随机存储器及其可靠性设计

    卢文娟:女,讲师,研究方向为低功耗高能效集成电路设计

    赵强:男,讲师,研究方向为SRAM存储单元的抗辐射

    陈军宁:男,教授,研究方向为超大规模集成电路设计

    通讯作者:

    吴秀龙 xiulong@ahu.edu.cn

  • 中图分类号: TN47

Research on Progress of Computing In-Memory Based on Static Random-Access Memory

Funds: The National Key Research and Development Program of China (2018YFB2202602), The National Natural Science Foundation of China (61934005, 62074001, U19A2074)
  • 摘要: 随着“算力时代”到来,大规模数据需要在存储器和处理器之间往返,然而传统冯·诺依曼架构中计算与存储分离,无法满足频繁访问的需求。存内计算(CIM)技术的诞生突破了冯·诺依曼瓶颈,打破了传统计算架构中的“存储墙”,因此对于“算力时代”具有革命性意义。由于静态随机存取存储器(SRAM)读取数据的速度快且与先进逻辑工艺具有较好的兼容性,因此基于SRAM的存内计算技术受到国内外学者的关注。该文主要概述了基于SRAM的存内计算技术在机器学习、编码、加解密算法等方面的应用;回顾了实现运算功能的各种电路结构,比较了各类以模数转换器(ADC)为核心的量化技术;之后分析了现有存内计算架构面临的挑战并且给出了现有的解决策略,最后从不同方面展望存内计算技术。
  • 图  1  SRAM阵列应用于卷积神经网络

    图  2  AES流程图

    图  3  布尔运算

    图  4  乘法运算

    图  5  减法运算原理图

    图  6  二进制内容可寻址

    图  7  三进制内容可寻址

    图  8  数字辅助型ADC

    图  9  晶体管尺寸加权

    图  10  电容加权技术

    图  11  脉冲加权

    图  12  共源共栅电流镜

    图  13  多行读取的读破坏

    图  14  电路单元库模型实例

    图  15  计算资源调度方式研究方案

    图  16  面向CIM的异构多处理器系统关键技术的研究思路

    表  1  CIM实现布尔运算的相关设计参数以及性能指标

    文献[2]文献[26]文献[29]文献[31]文献[33]
    传输管
    工艺
    阵列大小
    8T/8T+8T8T6T8T
    45 nm PTM180 nm22 nm FD-SOI28 nm65 nm
    NANA4 kB16 kb16 kb
    功耗每bit(fJ)8T:17.25
    8T+:29.67
    21.84248 (0.9 V)23.816.6 (0.8 V)
    13.2 (0.6 V)
    功能NAND/XOR/
    NOR/RCS
    NAND/AND/NOR/
    OR/XOR
    AND/OR (multi_row selsction)NOR/AND/XORAND/NAND /NOR/OR/ XOR/XNOR
    特点8T:读写分离
    8T+:读写分离,非对称SA检测
    读写分离读写分离局部位线4输入的布尔逻辑运算
    下载: 导出CSV

    表  2  存内实现乘法运算的参数以及性能指标

    文献[3]文献[4]文献[12]文献[11,13]文献[14]文献[37]文献[18,19]文献[40]
    单元类型6T8T1C10T8T10TTwin-8T6T6T
    工艺(nm)6565657455513055
    阵列大小(Kb)64216483.75164
    输入(bit)516411, 2, 451, 2, 7, 8
    权重(bit)511412, 511, 2, 8
    能效TOPS/WNA671.540.3(1 V)351(0.8 V)NAsingles channel:18.4-72.0NA0.6~40.2(0.9 V)
    面积(μm2)NA8.1×1046.3×1043.2×103NA4.69×1042.67×1055.94×106
    精确度(%)MINST99.0598.31>98>99NA90.02~99.52>90>98
    CIFAR1088.8383.50NA>88约8985.56~90.42NA>85
    下载: 导出CSV

    表  3  存内CAM芯片参数以及性能指标总结

    文献[9]文献[10]文献[33]文献[41]文献[42]
    阵列大小BCAM:4 kb16 kb16 kb8 kb16 kb
    TCAM:2 kb
    单元类型6T4+2T8T6T9T
    工艺(nm)2855652865
    功能BCAM/TCAM/
    SRAM/Logic
    BCAM/TCAM/LogicBCAM/TCAM/
    SRAM/Logic
    BCAM/SRA/
    Pseudo-TCAM
    BCAM
    功耗每bit(fJ)BCAM:0.6(1 V)BCAM:0.45(0.8 V)BCAM:0.24(0.6 V)0.13(0.9 V)BCAM:2.07(0.4 V)
    TCAM:0.74TCAM:0.41
    下载: 导出CSV
  • [1] JAISWAL A, CHAKRABORTY I, AGRAWAL A, et al. 8T SRAM cell as a multibit dot-product engine for beyond von neumann computin[J]. IEEE Transactions on Very Large Scale Integration (VlSI) Systems, 2019, 27(11): 2556–2567. doi: 10.1109/tvlsi.2019.2929245
    [2] AGRAWAL A, JAISWAL A, LEE C, et al. X-SRAM: Enabling in-memory boolean computations in CMOS static random access memories[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2018, 65(12): 4219–4232. doi: 10.1109/tcsi.2018.2848999
    [3] ALI M, JAISWAL A, KODGE S, et al. IMAC: In-memory multi-bit multiplication and ACcumulation in 6T SRAM array[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(8): 2521–2531. doi: 10.1109/tcsi.2020.2981901
    [4] JIANG Zhewei, YIN Shihui, SEO J S, et al. C3SRAM: In-memory-computing SRAM macro based on capacitive-coupling computing[J]. IEEE Solid-State Circuits Letters, 2019, 2(9): 131–134. doi: 10.1109/LSSC.2019.2934831
    [5] JIANG Zhewei, YIN Shihui, SEO J S, et al. C3SRAM: An in-memory-computing SRAM macro based on robust capacitive coupling computing mechanism[J]. IEEE Journal of Solid-State Circuits, 2020, 55(7): 1888–1897. doi: 10.1109/Jssc.2020.2992886
    [6] ZENG Jianmin, ZHANG Zhang, CHEN Runhao, et al. DM-IMCA: A dual-mode in-memory computing architecture for general purpose processing[J]. IEICE Electronics Express, 2020, 17(4): 20200005. doi: 10.1587/elex.17.20200005
    [7] ZHANG Hongtu, SHU Yuhao, JIANG Weixiong, et al. A 55nm, 0.4V 5526-TOPS/W compute-in-memory binarized CNN accelerator for AIoT applications[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(5): 1695–1699. doi: 10.1109/TCSII.2021.3066520
    [8] WANG Jingcheng, WANG Xiaowei, ECKERT C, et al. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory vector computing[J]. IEEE Journal of Solid-State Circuits, 2020, 55(1): 76–86. doi: 10.1109/JSSC.2019.2939682
    [9] JELOKA S, AKESH N B, SYLVESTER D, et al. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory[J]. IEEE Journal of Solid-State Circuits, 2016, 51(4): 1009–1021. doi: 10.1109/jssc.2016.2515510
    [10] DONG Qing, JELOKA S, SALIGANE M, et al. A 4 + 2T SRAM for searching and in-memory computing with 0.3-V VDDmin[J]. IEEE Journal of Solid-State Circuits, 2018, 53(4): 1006–1015. doi: 10.1109/jssc.2017.2776309
    [11] DONG Qing, SINANGIL M E, ERBAGCI B, et al. 15.3 A 351TOPS/W and 372.4GOPS compute-in-memory SRAM macro in 7nm FinFET CMOS for machine-learning applications[C]. The 2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, USA, 2020: 242–244.
    [12] BISWAS A and CHANDRAKASAN A P. CONV-SRAM: An energy-efficient SRAM with in-memory dot-product computation for low-power convolutional neural networks[J]. IEEE Journal of Solid-State Circuits, 2019, 54(1): 217–230. doi: 10.1109/jssc.2018.2880918
    [13] SINANGIL M E, ERBAGCI B, NAOUS R, et al. A 7-nm compute-in-memory SRAM macro supporting multi-bit input, weight and output and achieving 351 TOPS/W and 372.4 GOPS[J]. IEEE Journal of Solid-State Circuits, 2021, 56(1): 188–189. doi: 10.1109/JSSC.2020.3031290
    [14] AGRAWAL A, JAISWAL A, ROY D, et al. Xcel-RAM: Accelerating binary neural networks in high-throughput SRAM compute arrays[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(8): 3064–3076. doi: 10.1109/tcsi.2019.2907488
    [15] SI Xin, KHWA W S, CHEN Jiajing, et al. A dual-split 6T SRAM-based computing-in-memory unit-macro with fully parallel product-sum operation for binarized DNN edge processors[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(11): 4172–4185. doi: 10.1109/tcsi.2019.2928043
    [16] KHWA W S, CHEN Jiajing, LI Jiafang, et al. A 65nm 4Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3ns and 55.8TOPS/W fully parallel product-sum operation for binary DNN edge processors[C]. The 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, USA, 2018: 496–498.
    [17] CHIH Y D, LEE P H, FUJIWARA H, et al. 16.4 An 89TOPS/W and 16.3TOPS/mm2 all-digital SRAM-based full-precision compute-in memory macro in 22nm for machine-learning edge applications[C]. The 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, USA, 2021: 252–254.
    [18] ZHANG Jintao, WANG Zhuo, and VERMA N. A machine-learning classifier implemented in a standard 6T SRAM array[C]. The 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, USA, 2016: 1–2.
    [19] ZHANG Jintao, WANG Zhuo, and VERMA N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array[J]. IEEE Journal of Solid-State Circuits, 2017, 52(4): 915–924. doi: 10.1109/Jssc.2016.2642198
    [20] KANG M, GONUGONDLA S K, and SHANBHAG N R. A 19.4 nJ/decision 364K decisions/s in-memory random forest classifier in 6T SRAM array[C]. The ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 2017: 263–266.
    [21] KANG M and SHANBHAG N R. In-memory computing architectures for sparse distributed memory[J]. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10(4): 855–863. doi: 10.1109/TBCAS.2016.2545402
    [22] ALI M, AGRAWAL A, and ROY K. RAMANN: In-SRAM differentiable memory computations for memory-augmented neural networks[C]. The ACM/IEEE International Symposium on Low Power Electronics and Design, Massachusetts, USA, 2020: 61–66.
    [23] WANG Yuhao, NI Leibin, CHANG C H, et al. DW-AES: A domain-wall nanowire-based AES for high throughput and energy-efficient data encryption in non-volatile memory[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(11): 2426–2440. doi: 10.1109/TIFS.2016.2576903
    [24] WANG Yuhao, YU Hao, SYLVESTER D, et al. Energy efficient in-memory AES encryption based on nonvolatile domain-wall nanowire[C]. The 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2014: 1–4.
    [25] HUANG Shanshi, JIANG Hongwu, PENG Xiaochen, et al. XOR-CIM: Compute-in-memory SRAM architecture with embedded XOR encryption[C]. The 39th International Conference On Computer-Aided Design, San Diego, CA, USA, 2020: 77.
    [26] RAJPUT A K and PATTANAIK M. Implementation of boolean and arithmetic functions with 8T SRAM cell for in-memory computation[C]. The 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 2020: 1–5.
    [27] CHEN Jian, ZHAO Wenfeng, and HA Yajun. Area-efficient distributed arithmetic optimization via heuristic decomposition and in-memroy computing[C]. The 2019 IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, 2019: 1–4.
    [28] KIM H, CHEN Qian, and KIM B. A 16K SRAM-based mixed-signal in-memory computing macro featuring voltage-mode accumulator and row-by-row ADC[C]. The 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), Macao, China, 2019: 35–36.
    [29] NOEL J P, PEZZIN M, GAUCHI R, et al. A 35.6 TOPS/W/mm² 3-stage pipelined computational SRAM with adjustable form factor for highly data-centric applications[J]. IEEE Solid-State Circuits Letters, 2020, 3: 286–289. doi: 10.1109/lssc.2020.3010377
    [30] SIMON W A, QURESHI Y M, RIOS M, et al. BLADE: An in-cache computing architecture for edge devices[J]. IEEE Transactions on Computers, 2020, 69(9): 1349–1363. doi: 10.1109/TC.2020.2972528
    [31] SIMON W, GALICIA J, LEVISSE A, et al. A fast, reliable and wide-voltage-range in-memory computing architecture[C]. The 56th Annual Design Automation Conference 2019, San Francisco, USA, 2019: 83.
    [32] SURANA N, LAVANIA M, BARMA A, et al. Robust and high-performance 12-T interlocked SRAM for in-memory computing[C]. The 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 2020: 1323–1326.
    [33] LIN Zhiting, ZHAN Honglan, LI Xuan, et al. In-memory computing with double word lines and three read ports for four operands[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(5): 1316–1320. doi: 10.1109/TVLSI.2020.2976099
    [34] SUN Xiaoyu, LIU Rui, PENG Xiaochen, et al. Computing-in-memory with SRAM and RRAM for binary neural networks[C]. The 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 2018: 1–4.
    [35] JIANG Hongwu, LIU Rui, and YU Shimeng. 8T XNOR-SRAM based parallel compute-in-memory for deep neural network accelerator[C]. The 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, USA, 2020: 257–260.
    [36] LIU Rui, PENG Xiaochen, SUN Xiaoyu, et al. Parallelizing SRAM arrays with customized bit-cell for binary neural networks[C]. The 55th Annual Design Automation Conference, San Francisco, USA, 2018: 21.
    [37] SI Xin, CHEN Jiajing, TU Y N, et al. A Twin-8T SRAM computation-in-memory unit-macro for multibit CNN-based AI edge processors[J]. IEEE Journal of Solid-State Circuits, 2020, 55(1): 189–202. doi: 10.1109/JSSC.2019.2952773
    [38] SU Jianwei, SI Xin, CHOU Y C, et al. 15.2 A 28nm 64Kb inference-training two-way transpose multibit 6T SRAM compute-in-memory macro for AI edge chips[C]. The 2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, USA, 2020: 240–242.
    [39] KNEIP A and BOL D. Impact of analog non-idealities on the design space of 6T-SRAM current-domain dot-product operators for in-memory computing[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(5): 1931–1944. doi: 10.1109/TCSI.2021.3058510
    [40] CHIU Y C, ZHANG Zhixiao, CHEN Jiajing, et al. A 4-Kb 1-to-8-bit configurable 6T SRAM-based computation-in-memory unit-macro for CNN-based AI edge processors[J]. IEEE Journal of Solid-State Circuits, 2020, 55(10): 2790–2801. doi: 10.1109/JSSC.2020.3005754
    [41] GUPTA N, MAKOSIEJ A, VLADIMIRESCU A, et al. 1.56GHz/0.9V energy-efficient reconfigurable CAM/SRAM using 6T-CMOS bitcell[C]. The ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 2017: 316–319.
    [42] WANG Bo, NGUYEN T Q, DO A T, et al. Design of an ultra-low voltage 9T SRAM with equalized bitline leakage and CAM-assisted energy efficiency improvement[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2015, 62(2): 441–448. doi: 10.1109/tcsi.2014.2360760
    [43] SRINIVASA S, CHEN Weihao, TU Y N, et al. Monolithic-3D integration augmented design techniques for computing in SRAMs[C]. The 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019: 1–5.
    [44] CHEN Hanchun, LI Jinfu, HSU C L, et al. Configurable 8T SRAM for enbling in-memory computing[C]. The 2019 2nd International Conference on Communication Engineering and Technology (ICCET), Nagoya, Japan, 2019: 139–142.
    [45] LIN Zhiting, ZHU Zhiyong, ZHAN Honglan, et al. Two-direction in-memory computing based on 10T SRAM with horizontal and vertical decoupled read ports[J]. IEEE Journal of Solid-State Circuits, 2021, 56(9): 2832–2844. doi: 10.1109/JSSC.2021.3061260
    [46] XUE Chengxin, ZHAO Weicheng, YANG T H, et al. A 28-nm 320-Kb TCAM macro using split-controlled single-load 14T cell and triple-margin voltage sense amplifier[J]. IEEE Journal of Solid-State Circuits, 2019, 54(10): 2743–2753. doi: 10.1109/jssc.2019.2915577
    [47] BISWAS A and CHANDRAKASAN A P. Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications[C]. The 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, USA, 2018: 488–490.
    [48] KHADDAM-ALJAMEH R, FRANCESE P A, BENINI L, et al. An SRAM-based multibit in-memory matrix-vector multiplier with a precision that scales linearly in area, time, and power[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(2): 372–385. doi: 10.1109/TVLSI.2020.3037871
    [49] JIA Hongyang, VALAVI H, TANG Yinqi, et al. A programmable heterogeneous microprocessor based on bit-scalable in-memory computing[J]. IEEE Journal of Solid-State Circuits, 2020, 55(9): 2609–2621. doi: 10.1109/jssc.2020.2987714
    [50] GONG Minxiang, CAO Ningyuan, CHANG Muya, et al. A 65nm thermometer-encoded time/charge-based compute-in-memory neural network accelerator at 0.735pJ/MAC and 0.41pJ/Update[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(4): 1408–1412. doi: 10.1109/TCSII.2020.3027801
    [51] JIANG Hongwu, PENG Xiaochen, HUANG Shanshi, et al. CIMAT: A compute-in-memory architecture for on-chip training based on transpose SRAM arrays[J]. IEEE Transactions on Computers, 2020, 69(7): 944–954. doi: 10.1109/tc.2020.2980533
    [52] JIANG Hongwu, PENG Xiaochen, HUANG Shanshi, et al. CIMAT: A transpose SRAM-based compute-in-memory architecture for deep neural network on-chip training[C]. The International Symposium on Memory Systems, Columbia, 2019: 490–496.
    [53] YIN Shihui, JIANG Zhewei, SEO J S, et al. XNOR-SRAM: In-memory computing SRAM macro for binary/ternary deep neural networks[J]. IEEE Journal of Solid-State Circuits, 2020, 55(6): 1733–1743. doi: 10.1109/JSSC.2019.2963616
    [54] SU Jianwei, CHOU Y C, LIU Ruhui, et al. 16.3 a 28nm 384kb 6T-SRAM computation-in-memory macro with 8b precision for AI edge chips[C]. The 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, USA, 2021: 250–252.
    [55] GONUGONDLA S K, KANG M, and SHANBHAG N R. A variation-tolerant in-memory machine learning classifier via on-chip training[J]. IEEE Journal of Solid-State Circuits, 2018, 53(11): 3163–3173. doi: 10.1109/JSSC.2018.2867275
    [56] GONUGONDLA S K, KANG M, and SHANBHAG N. A 42pJ/decision 3.12TOPS/W robust in-memory machine learning classifier with on-chip training[C]. The 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, USA, 2018: 490–492.
    [57] ZHANG Jin, LIN Zhiting, WU Xiulong, et al. An 8T SRAM array with configurable word lines for in-memory computing operation[J]. Electronics, 2021, 10(3): 300. doi: 10.3390/electronics10030300
    [58] LIN Zhiting, ZHANG Honglan, CHEN Zhongwei, et al. Cascade current mirror to improve linearity and consistency in SRAM in-memory computing[J]. IEEE Journal of Solid-State Circuits, 2021, 56(8): 2550–2562. doi: 10.1109/JSSC.2021.3063719
    [59] KIM H, YOO T, KIM T T H, et al. Colonnade: A reconfigurable SRAM-based digital bit-serial compute-in-memory macro for processing neural networks[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2221–2233. doi: 10.1109/JSSC.2021.3061508
    [60] KANG M, GONUGONDLA S K, PATIL A, et al. A multi-functional in-memory inference processor using a standard 6T SRAM array[J]. IEEE Journal of Solid-State Circuits, 2018, 53(2): 642–655. doi: 10.1109/jssc.2017.2782087
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  2553
  • HTML全文浏览量:  1158
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 修回日期:  2021-10-28
  • 网络出版日期:  2021-11-19
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回