高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于局部密度的自适应眼电伪迹去除方法

李沛洋 高晓辉 朱鹏程 黄伟杰 李存波 司亚静 徐鹏 田银

李沛洋, 高晓辉, 朱鹏程, 黄伟杰, 李存波, 司亚静, 徐鹏, 田银. 一种基于局部密度的自适应眼电伪迹去除方法[J]. 电子与信息学报, 2022, 44(2): 464-476. doi: 10.11999/JEIT210845
引用本文: 李沛洋, 高晓辉, 朱鹏程, 黄伟杰, 李存波, 司亚静, 徐鹏, 田银. 一种基于局部密度的自适应眼电伪迹去除方法[J]. 电子与信息学报, 2022, 44(2): 464-476. doi: 10.11999/JEIT210845
LI Peiyang, GAO Xiaohui, ZHU Pengcheng, HUANG Weijie, LI Cunbo, SI Yajing, XU Peng, TIAN Yin. An Adaptive EOG Removal Method Based on Local Density[J]. Journal of Electronics & Information Technology, 2022, 44(2): 464-476. doi: 10.11999/JEIT210845
Citation: LI Peiyang, GAO Xiaohui, ZHU Pengcheng, HUANG Weijie, LI Cunbo, SI Yajing, XU Peng, TIAN Yin. An Adaptive EOG Removal Method Based on Local Density[J]. Journal of Electronics & Information Technology, 2022, 44(2): 464-476. doi: 10.11999/JEIT210845

一种基于局部密度的自适应眼电伪迹去除方法

doi: 10.11999/JEIT210845
基金项目: 国家自然科学基金青年基金(61901077)
详细信息
    作者简介:

    李沛洋:男,1989年生,博士,研究方向为鲁棒脑网络估计算法、电特征提取和模式识别

    高晓辉:男,1998年生,硕士生,研究方向为贝叶斯参数估计

    黄伟杰:男,1999年生,硕士生,研究方向为神经网络、深度学习

    李存波:男,1999年生,硕士生,研究方向为神经网络、深度学习

    司亚静:女,1990年生,博士,研究方向为决策脑电认知机制和精神分裂症患者冷执行功能

    徐鹏:男,1977年生,博士,研究方向为脑机交互技术、生理信号处理

    田银:女,1972年生,博士,研究方向为脑电信号处理、认知神经科学

    通讯作者:

    田银 tianyin@cqupt.edu.cn

  • 中图分类号: TN911.72

An Adaptive EOG Removal Method Based on Local Density

Funds: The National Natural Science Foundation of China Youth Fund (61901077)
  • 摘要: 脑电信号幅值微弱且信噪比低易受到多种伪迹影响。其中,眼电伪迹幅值高、随机性强,常使脑电信号产生明显畸变,对信号的后续分析将产生极大的影响。传统伪迹去除方法难以精确定位伪迹成分,导致过多有效信息丢失。针对上述问题,该文提出一种基于数据驱动的自适应伪迹定位和去除方法。该方法将局部密度引入独立成分分析(ICA)并通过聚类分析自适应估计辨识脑电和噪声成分的阈值,最终实现了眼电伪迹的精准定位和去除。通过仿真和真实实验,该文对比了所提方法与传统伪迹去除方法在峰值信噪比、均方误差、互信息等量化指标下的性能差异,并通过统计检验揭示了所提方法相比于其他方法在信号恢复方面的显著性优势。
  • 图  1  脑电电极位置图

    图  2  静息态脑电采集流程

    图  3  仿真数据生成图

    图  4  仿真实验流程图

    图  5  功率谱密度对比图

    图  6  ATICA 伪迹去除过程

    图  7  真实实验流程图

    图  8  EEG 甄别伪迹成分效果对比图

    表  1  仿真实验均值指标对比

    Zeroing ICAwICA本文ATICA
    SNR3.96±0.41$ \boldsymbol{\psi } $4.70±0.53$ \boldsymbol{\psi } $5.73±0.40
    MSE5.46±0.25$ \boldsymbol{\psi } $3.56±0.95$ \boldsymbol{\psi } $2.69±0.25
    PSNR45.15±0.41$ \boldsymbol{\psi } $45.89±0.53$ \boldsymbol{\psi } $46.93±0.40
    RMSE1.80±0.06$ \boldsymbol{\psi } $1.56±0.13$ \boldsymbol{\psi } $1.37±0.06
    RCE0.80±0.02$ \boldsymbol{\psi } $0.52±0.03$ \boldsymbol{\psi } $0.87±0.03
    下载: 导出CSV

    表  2  真实实验PCC/MI均值对比

    电极区域指标Zeroing
    ICA
    wICAATICA
    额顶叶(FP)PCC
    MI
    0.63±0.09$ \boldsymbol{\psi } $
    0.82±0.13$ \boldsymbol{\psi } $
    0.63±0.11$ \boldsymbol{\psi } $
    0.86±0.16$ \boldsymbol{\psi } $
    0.68±0.09
    1.05±0.17
    前额叶(AF)PCC
    MI
    0.69±0.09$ \boldsymbol{\psi } $
    0.88±0.14$ \boldsymbol{\psi } $
    0.71±0.11$ \boldsymbol{\psi } $
    0.98±0.18$ \boldsymbol{\psi } $
    0.74±0.09
    1.15±0.17
    额叶(F)PCC
    MI
    0.81±0.05$ \boldsymbol{\psi } $
    0.97"±0.16$ \boldsymbol{\psi } $
    0.85±0.06$ \boldsymbol{\psi } $
    1.17±0.24$ \boldsymbol{\psi } $
    0.88±0.04
    1.35±0.23
    额颞叶(FT)PCC
    MI
    0.85±0.04$ \boldsymbol{\psi } $
    1.01±0.16$ \boldsymbol{\psi } $
    0.85±0.05$ \boldsymbol{\psi } $
    1.24±0.31$ \boldsymbol{\psi } $
    0.88±0.04
    1.35±0.28
    额中央(FC)PCC
    MI
    0.84±0.05$ \boldsymbol{\psi } $
    1.02±0.16$ \boldsymbol{\psi } $
    0.88±0.05$ \boldsymbol{\psi } $
    1.26±0.26$ \boldsymbol{\psi } $
    0.91±0.04
    1.45±0.23
    颞叶(T)PCC
    MI
    0.87±0.04$ \boldsymbol{\psi } $
    1.09±0.17$ \boldsymbol{\psi } $
    0.91±0.04$ \boldsymbol{\psi } $
    1.31±0.32$ \boldsymbol{\psi } $
    0.94±0.03
    1.55±0.32
    额叶中央沟(C)PCC
    MI
    0.85±0.04$ \boldsymbol{\psi } $
    1.04±0.15$ \boldsymbol{\psi } $
    0.90±0.05$ \boldsymbol{\psi } $
    1.28±0.32$ \boldsymbol{\psi } $
    0.93±0.04
    1.50±0.33
    颞顶叶(TP)PCC
    MI
    0.88±0.04$ \boldsymbol{\psi } $
    1.07±0.15$ \boldsymbol{\psi } $
    0.91±0.03$ \boldsymbol{\psi } $
    1.28±0.27$ \boldsymbol{\psi } $
    0.94±0.02
    1.53±0.27
    中央顶叶(CP)PCC
    MI
    0.86±0.04$ \boldsymbol{\psi } $
    1.07±0.17$ \boldsymbol{\psi } $
    0.91±0.03$ \boldsymbol{\psi } $
    1.28±0.24$ \boldsymbol{\psi } $
    0.94±0.03
    1.53±0.24
    顶叶(P)PCC
    MI
    0.87±0.04$ \boldsymbol{\psi } $
    1.06±0.15$ \boldsymbol{\psi } $
    0.91±0.03$ \boldsymbol{\psi } $
    1.27±0.26$ \boldsymbol{\psi } $
    0.94±0.02
    1.50±0.24
    枕叶(O)PCC
    MI
    0.85±0.04$ \boldsymbol{\psi } $
    1.02±0.15$ \boldsymbol{\psi } $
    0.89±0.04$ \boldsymbol{\psi } $
    1.21±0.30$ \boldsymbol{\psi } $
    0.92±0.03
    1.43±0.31
    通道指标均值PCC
    MI
    0.82±0.05$ \boldsymbol{\psi } $
    1.00±0.16$ \boldsymbol{\psi } $
    0.86±0.05$ \boldsymbol{\psi } $
    1.20±0.26$ \boldsymbol{\psi } $
    0.89±0.04
    1.41±0.26
    下载: 导出CSV
  • [1] CHEN Xun, XU Xueyuan, LIU Aiping, et al. The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(2): 359–370. doi: 10.1109/TIM.2017.2759398
    [2] QIU Yang, ZHOU Weidong, YU Nana, et al. Denoising sparse autoencoder-based ictal EEG classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(9): 1717–1726. doi: 10.1109/TNSRE.2018.2864306.
    [3] JADAV G M, LERGA J, and ŠTAJDUHAR I. Adaptive filtering and analysis of EEG signals in the time-frequency domain based on the local entropy[J]. EURASIP Journal on Advances in Signal Processing, 2020, 2020(1): 7. doi: 10.1186/s13634-020-00667-6
    [4] SABA-SADIYA S, CHANTLAND E, ALHANAI T, et al. Unsupervised EEG artifact detection and correction[J]. Frontiers in Digital Health, 2021, 2: 608920. doi: 10.3389/fdgth.2020.608920
    [5] JEBELLI H, HWANG S, and LEE S. EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device[J]. Journal of Computing in Civil Engineering, 2018, 32(1): 04017070. doi: 10.1061/(ASCE)CP.1943-5487.0000719
    [6] 杜晓燕, 李颖洁, 朱贻盛. 脑电信号伪迹去除的研究进展[J]. 生物医学工程学杂志, 2008, 25(2): 464–467,671. doi: 10.3321/j.issn:1001-5515.2008.02.048

    DU Xiaoyan, LI Yingjie, and ZHU Yisheng. Removal of artifacts from EEG signal[J]. Journal of Biomedical Engineering, 2008, 25(2): 464–467,671. doi: 10.3321/j.issn:1001-5515.2008.02.048
    [7] 刘长生, 唐艳, 汤井田. 基于独立分量分析的脑电中眼电伪迹消除[J]. 计算机工程与应用, 2007, 43(17): 230–232. doi: 10.3321/j.issn:1002-8331.2007.17.071

    LIU Changsheng, TANG Yan, and TANG Jingtian. Removal of ocular artifact from EEG based on ICA[J]. Computer Engineering and Applications, 2007, 43(17): 230–232. doi: 10.3321/j.issn:1002-8331.2007.17.071
    [8] VISWANADHAM T and KUMAR P R. Artefacts removal from ECG signal: Dragonfly optimization-based learning algorithm for neural network-enhanced adaptive filtering[J]. Scalable Computing:Practice and Experience, 2020, 21(2): 247–263. doi: 10.12694/scpe.v21i2.1657
    [9] KOSE M R, AHIRWAL M K, and KUMAR A. A new approach for emotions recognition through EOG and EMG signals[J]. Signal, Image and Video Processing, 2021, 15(8): 1863–1871. doi: 10.1007/s11760-021-01942-1
    [10] 赵春煜, 邱天爽. 基于典型相关分析和小波变换的眼电伪迹去除[J]. 北京生物医学工程, 2011, 30(5): 474–479. doi: 10.3969/j.issn.1002-3208.2011.05.08

    ZHAO Chunyu and QIU Tianshuang. Automatic removal of ocular artifacts in EEG signals by using CCA and wavelet transformation[J]. Beijing Biomedical Engineering, 2011, 30(5): 474–479. doi: 10.3969/j.issn.1002-3208.2011.05.08
    [11] 张莉, 何传红, 何为, 等. 基于典型相关分析与低通滤波的肌电伪迹去除[J]. 数据采集与处理, 2010, 25(2): 255–258. doi: 10.3969/j.issn.1004-9037.2010.02.023

    ZHANG Li, HE Chuanhong, HE Wei, et al. Method for removing EMG artifacts based on CCA and low-pass filtering[J]. Journal of Data Acquisition &Processing, 2010, 25(2): 255–258. doi: 10.3969/j.issn.1004-9037.2010.02.023
    [12] 张莉, 何传红, 何为. 典型相关分析去除脑电信号中眼电伪迹的研究[J]. 计算机工程与应用, 2009, 45(31): 218–220. doi: 10.3778/j.issn.1002-8331.2009.31.065

    ZHANG Li, HE Chuanhong, and HE Wei. Research on removing EOG artifacts from EEG based on CCA[J]. Computer Engineering and Applications, 2009, 45(31): 218–220. doi: 10.3778/j.issn.1002-8331.2009.31.065
    [13] SHEORAN P and SAINI J S. A new method for automatic electrooculogram and eye blink artifacts correction of EEG signals using CCA and NAPCT[J]. Procedia Computer Science, 2020, 167: 1761–1770. doi: 10.1016/j.procs.2020.03.386
    [14] DORA C and BISWAL P K. An improved algorithm for efficient ocular artifact suppression from frontal EEG electrodes using VMD[J]. Biocybernetics and Biomedical Engineering, 2020, 40(1): 148–161. doi: 10.1016/j.bbe.2019.03.002
    [15] LIU Yizhi, HABIBNEZHAD M, SHAYESTEH S, et al. Paving the way for future eeg studies in construction: Dependent component analysis for automatic ocular artifact removal from brainwave signals[J]. Journal of Construction Engineering and Management, 2021, 147(8): 04021087. doi: 10.1061/(ASCE)CO.1943-7862.0002097
    [16] GU Yue, LI Xue, CHEN Shengyong, et al. AOAR: An automatic ocular artifact removal approach for multi-channel electroencephalogram data based on non-negative matrix factorization and empirical mode decomposition[J]. Journal of Neural Engineering, 2021, 18(5): 056012. doi: 10.1088/1741-2552/abede0
    [17] SUN Rui, CHAN C, HSIAO J, et al. Validation of SOB1-DANS method for automatic identification of horizontal and vertical eye movement components from EEG[J]. Psychophysiology, 2021, 58(2): e13731. doi: 10.1111/yp.13731
    [18] KASTEN F H and HERRMANN C S. Recovering brain dynamics during concurrent tACS-M/EEG: An overview of analysis approaches and their methodological and interpretational pitfalls[J]. Brain Topography, 2019, 32(6): 1013–1019. doi: 10.1007/s10548-019-00727-7
    [19] 李明爱, 刘帆. 脑电中眼电伪迹的自动识别与去除[J]. 北京生物医学工程, 2018, 37(6): 559–565. doi: 10.3969/j.issn.1002-3208.2018.06.002

    LI Ming’ai and LIU Fan. The automatic identification and removal of ocular artifacts from EEG[J]. Beijing Biomedical Engineering, 2018, 37(6): 559–565. doi: 10.3969/j.issn.1002-3208.2018.06.002
    [20] 刘志勇, 孙金玮, 卜宪庚. 单通道脑电信号眼电伪迹去除算法研究[J]. 自动化学报, 2017, 43(10): 1726–1735. doi: 10.16383/j.aas.2017.c160191

    LIU Zhiyong, SUN Jinwei, and BU Xiangeng. EOG artifact removing method for single-channel EEG signal[J]. Acta Automatica Sinica, 2017, 43(10): 1726–1735. doi: 10.16383/j.aas.2017.c160191
    [21] 赵文瑞, 陈鑫源, 雷旭. 同步脑电-功能磁共振信号处理进展[J]. 信号处理, 2018, 34(8): 930–942. doi: 10.16798/j.issn.1003-0530.2018.08.006

    ZHAO Wenrui, CHEN Xinyuan, and LEI Xu. Advances in signal processing of simultaneous EEG-fMRI[J]. Journal of Signal Processing, 2018, 34(8): 930–942. doi: 10.16798/j.issn.1003-0530.2018.08.006
    [22] 杨磊, 杨帆, 何艳. 采用样本熵自适应噪声完备经验模态分解的脑电信号眼电伪迹去除算法[J]. 西安交通大学学报, 2020, 54(8): 177–184. doi: 10.7652/xjtuxb202008023

    YANG Lei, YANG Fan, and HE Yan. An electroencephalogram artifacts removal algorithm for electroencephalogram signals based on sample entropy-complete ensemble empirical mode decomposition with adaptive noise[J]. Journal of Xi'an Jiaotong University, 2020, 54(8): 177–184. doi: 10.7652/xjtuxb202008023
    [23] PEH W Y, THOMAS J, BAGHERI E, et al. Multi-center validation study of automated classification of pathological slowing in adult scalp electroencephalograms via frequency features[J]. International Journal of Neural Systems, 2021, 31(6): 2150016. doi: 10.1142/S0129065721500167
    [24] DE BEER N A M, VAN DE VELDE M, and CLUITMANS P J M. Clinical evaluation of a method for automatic detection and removal of artifacts in auditory evoked potential monitoring[J]. Journal of Clinical Monitoring, 1995, 11(6): 381–391. doi: 10.1007/BF01616744
    [25] PARADESHI K P and KOLEKAR U D. Ocular artifact suppression in multichannel EEG using dynamic segmentation and enhanced wICA[J]. IETE Journal of Research, 2020: 1–14. doi: 10.1080/03772063.2020.1725657.
    [26] RANJAN R, SAHANA B C, and BHANDARI A K. Ocular artifact elimination from electroencephalography signals: A systematic review[J]. Biocybernetics and Biomedical Engineering, 2021, 41(3): 960–996. doi: 10.1016/j.bbe.2021.06.007
    [27] YADAV A and CHOUDHRY M S. A new approach for ocular artifact removal from EEG signal using EEMD and SCICA[J]. Cogent Engineering, 2020, 7(1): 1835146. doi: 10.1080/23311916.2020.1835146
    [28] BARBATI G, PORCARO C, ZAPPASODI F, et al. Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals[J]. Clinical Neurophysiology, 2004, 115(5): 1220–1232. doi: 10.1016/j.clinph.2003.12.015
    [29] RADÜNTZ T, SCOUTEN J, HOCHMUTH O, et al. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features[J]. Journal of Neural Engineering, 2017, 14(4): 046004. doi: 10.1088/1741-2552/aa69d1
    [30] ISLAM S, EL-HAJJ A M, ALAWIEH H, et al. EEG mobility artifact removal for ambulatory epileptic seizure prediction applications[J]. Biomedical Signal Processing and Control, 2020, 55: 101638. doi: 10.1016/j.bspc.2019.101638
    [31] YASODA K, PONMAGAL R S, BHUVANESHWARI K S, et al. Automatic detection and classification of EEG artifacts using fuzzy kernel SVM and wavelet ICA (WICA)[J]. Soft Computing, 2020, 24(21): 16011–16019. doi: 10.1007/s00500-020-04920-w
    [32] DELORME A, SEJNOWSKI T, and MAKEIG S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis[J]. Neuroimage, 2007, 34(4): 1443–1449. doi: 10.1016/j.neuroimage.2006.11.004
    [33] ÇINAR S. Design of an automatic hybrid system for removal of eye-blink artifacts from EEG recordings[J]. Biomedical Signal Processing and Control, 2021, 67: 102543. doi: 10.1016/j.bspc.2021.102543
    [34] MANOJPRABU M and DHULIPALA V R S. Power aware hessian multi-set canonical correlations based algorithm for wireless eeg sensor networks[J]. Wireless Personal Communications, 2021, 117(4): 2745–2756. doi: 10.1007/s11277-020-07045-3
    [35] 吕健. 基于改进小波阈值函数的癫痫信号去噪算法[J]. 计算机与数字工程, 2020, 48(10): 2348–2352. doi: 10.3969/j.issn.1672-9722.2020.10.009

    LV Jian. An epileptic signal denoising algorithm based on improved wavelet threshold function[J]. Computer and Digital Engineering, 2020, 48(10): 2348–2352. doi: 10.3969/j.issn.1672-9722.2020.10.009
    [36] DEBNATH L and SHAH F A. Wavelet Transforms and Their Applications[M]. Boston: Birkhäuser, 2002. doi: 10.1007/978-1-4612-0097-0.
    [37] CASTELLANOS N P and MAKAROV V A. Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis[J]. Journal of Neuroscience Methods, 2006, 158(2): 300–312. doi: 10.1016/j.jneumeth.2006.05.033
    [38] MAHAJAN R and MORSHED B I. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and wavelet-ICA[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(1): 158–165. doi: 10.1109/JBHI.2014.2333010
    [39] MAHAJAN R and MORSHED B I. Sample entropy enhanced wavelet-ica denoising technique for eye blink artifact removal from scalp eeg dataset[C]. 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, Ameriaca, 2013: 1394–1397. doi: 10.1109/NER.2013.6696203.
    [40] ZOU Ling, XU Soukun, MA Zhenghua, et al. Automatic removal of artifacts from attention deficit hyperactivity disorder electroencephalograms based on independent component analysis[J]. Cognitive Computation, 2013, 5(2): 225–233. doi: 10.1007/s12559-012-9199-3
    [41] PION-TONACHINI L, HSU S H, CHANG C Y, et al. Online automatic artifact rejection using the real-time EEG source-mapping toolbox (REST)[C]. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, USA, 2018: 106–109. doi: 10.1109/EMBC.2018.8512191.
    [42] SCHOEMAN D and FIELDING B C. Coronavirus envelope protein: Current knowledge[J]. Virology Journal, 2019, 16(1): 69. doi: 10.1186/s12985-019-1182-0
    [43] 耿振伟, 粟毅, 郁文贤. 一种快速自适应的均值漂移聚类算法[J]. 信号处理, 2009, 25(1): 153–156. doi: 10.3969/j.issn.1003-0530.2009.01.032

    GENG Zhenwei, SU Yi, and YU Wenxian. A very fast adaptive mean shift clustering method[J]. Signal Processing, 2009, 25(1): 153–156. doi: 10.3969/j.issn.1003-0530.2009.01.032
    [44] 李乡儒, 吴福朝, 胡占义. 均值漂移算法的收敛性[J]. 软件学报, 2005, 16(3): 365–374.

    LI Xiangru, WU Fuchao, and HU Zhanyi. Convergence of a mean shift algorithm[J]. Journal of Software, 2005, 16(3): 365–374.
    [45] HUYNH-THU Q and GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800–801. doi: 10.1049/el:20080522
    [46] KELTER R. Analysis of Bayesian posterior significance and effect size indices for the two-sample t-test to support reproducible medical research[J]. BMC Medical Research Methodology, 2020, 20(1): 88. doi: 10.1186/s12874-020-00968-2
    [47] URBANO J, CORSI M, and HANJALIC A. How do metric score distributions affect the type I error rate of statistical significance tests in information retrieval?[C]. Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval, Virtual Event, Canada, 2021: 245–250. doi: 10.1145/3471158.3472242.
    [48] MAHADEVAN A S, TOOLEY U A, BERTOLERO M A, et al. Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data[J]. NeuroImage, 2021, 241: 118408. doi: 10.1016/j.neuroimage.2021.118408
    [49] LILIENTHAL J and DARGIE W. Application of tensor decomposition in removing motion artifacts from the measurements of a wireless electrocardiogram[C]. 2020 IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 2020: 1–8. doi: 10.23919/FUSION45008.2020.9190621.
    [50] BENESTY J, CHEN Jingdong, HUANG Yiteng, et al. Pearson Correlation Coefficient[M]. COHEN I, HUANG Yiteng, CHEN Jingdong, et al. Noise Reduction in Speech Processing. Berlin Heidelberg: Springer, 2009: 1–4. doi: 10.1007/978-3-642-00296-0_5.
    [51] 何海洋, 罗志增. 基于K近邻互信息估计的EEG伪迹消除方法[J]. 计算机工程, 2013, 39(6): 255–260. doi: 10.3969/j.issn.1000-3428.2013.06.057

    HE Haiyang and LUO Zhizeng. EEG artifacts removal method based on K-nearest neighbors mutual information estimation[J]. Computer Engineering, 2013, 39(6): 255–260. doi: 10.3969/j.issn.1000-3428.2013.06.057
    [52] ONTON J and MAKEIG S. Information-based modeling of event-related brain dynamics[J]. Progress in Brain Research, 2006, 159: 99–120. doi: 10.1016/S0079-6123(06)59007-7
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  758
  • HTML全文浏览量:  412
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2022-01-15
  • 录用日期:  2022-01-17
  • 网络出版日期:  2022-01-22
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回